

PUESTA EN SERVICIO DEL TELESCOPIO CPT (CHARTS PATHFINDER TELESCOPE) EN CERRO CALÁN

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO

VICENTE RODRIGO AITKEN ALBORNOZ

PROFESOR GUÍA: RICARDO FINGER CAMUS

MIEMBROS DE LA COMISIÓN: TOMAS CASSANELLI ESPEJO FRANCO CUROTTO MOLINA

Este trabajo ha sido financiado por: Fondo ANID Basal FB210003, FONDEF ID21-10359. Fondecyt 1221662, ANID / Fondo 2023 QUIMAL / QUIMAL230001. Dunlap Seed Founding Program por la familia David Dunlap y la Universidad de Toronto.

> SANTIAGO DE CHILE 2025

RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO POR: VICENTE RODRIGO AITKEN ALBORNOZ FECHA: 2025 PROF. GUÍA: RICARDO FIGNER CAMUS

PUESTA EN SERVICIO DEL TELESCOPIO CPT (CHARTS PATHFINDER TELESCOPE) EN CERRO CALÁN

En el presente trabajo se describe el ensamblaje, caracterización y puesta en servicio del nuevo telescopio *CHARTS Pathfinder Telescope* (CPT), un radiotelescopio de 3 metros de diámetro ubicado en la cumbre del cerro Calán, en el Observatorio Astronómico Nacional de Chile. Este proyecto tiene un enfoque práctico en el desarrollo de herramientas para la astronomía, involucrando diciplinas como la mecánica, electrónica, radiofrecuencia y software.

El proceso de ensamblaje significó el montaje del reflector parabólico, la montura altazimutal y el receptor de radiofrecuencia. El sistema electrónico y de adquisición se centró en una solución de bajo costo y alta eficiencia, utilizando radios definidas por software, amplificadores de bajo ruido y filtros de pasabanda. También se diseñaron softwares para la observación de cuerpos celestes y calibración del instrumento.

La caracterización del telescopio incluyó la medición del patrón de radiación para sus frecuencias de interés, se midió un haz de media potencia de 4.5 grados a 1.4 GHz y 7.5 a 400 MHz donde se obtuvo una ganancia de 31.5 dBi y una directividad (dB) de 39.7 para la banda de calibración de 21 cm de longitud de onda conocida como HI. Los resultados son consistentes con la teoría para una antena parabolica de 3 metros con una eficiencia de 63 % a 1.42 GHz. El proyecto culmina con la "primera luz" al observar la emisión de HI en el centro Galáctico. La observación es consistente con la emisión reportada para región estandar S9 de calibración

Con la operación del CPT se espera poder realizar actividades de docencia e investigación, como interferometría de larga base, estudios de llamaradas solares y apoyo en el estudio de ráfagas rápidas de radio. Este trabajo significa un avance en la capacidad técnica de instrumentación astronómica para la comunidad científica local así como también un recurso para colaboraciones internacionales como la iniciativa del proyecto CHARTS.

But remember this, Japanese boy... airplanes are not tools for war. They are not for making money. Airplanes are beautiful dreams. Engineers turn dreams into reality. - Hayao Miyazaki

Agradecimientos

Primero que todo quiero agradecer a mi profesor guía Ricardo Finger, quien no solo me entregó esta oportunidad de liderar un proyecto de tal envergadura, sino que también entregó importantes esfuerzos para llevarlo adelante y me devolvió la oportunidad de realizar algo que en algún momento solo era un sueño. Agradezco a Tomás Cassanelli por creer en mis habilidades y permitirme involucrarme en el proyecto y a Franco Curotto, quien me entrego valiosos consejos y apoyo en el proceso y nunca dudó del éxito que alcanzaría.

Agradezco a mis segundas familias, quienes sin su apoyo probablemente no haya llegado tan lejos. Gracias equipo del laboratorio MWL, Claudia y el humor, Gonzalo y el conocimiento, Diego y las pesas, Juan y los chistes, José y las piezas, Sebita, Juan Francisco y el curso, Pancho, José, gracias por su apoyo en este proyecto, la calidez y el humor que levanta la frente cada lunes.

Gracias equipo de atletismo de la FCFM y de la Universidad de Chile, por ser mi fuente de energía y motivación en los momentos más difíciles y por ser mi escape de la rutina. Gracias Joaco, Karen, Profesor Mario, Fica, Fefi, Cata, Dan, lanzadores, que la pista y el foso no sería lo mismo sin ustedes.

Gracias a mi familia por su apoyo incondicional, por creer en mí y darme todo para poder avanzar en este viaje tan largo y lleno de desafíos. Gracias, amigos, por estar siempre ahí, aunque los años pasen y las distancias se hagan más grandes, siempre están en mi corazón.

Gracias a los primeros, Ro y Joaco, los que me siguieron, Pepe, Jano y Yohans, y los encontré después, Cata, Magda, Diego, Marcelo, Cami, Mati. Sinceramente, la mejor época de nuestras vidas, no hubiera sido lo mismo sin ustedes y muchos otros que no nombro.

Dejo una mención a esas bandas que me acompañaron en los momentos de estudio, de trabajo, de relajo, de fiesta, de tristeza, de felicidad, de amor, de desamor, de todo. Muse, System of A Down, Alter Bridge, The Wombats, Radiohead, Jorge Drexler, Red Hot Chilli Pappers entre muchas otras.

Tabla de Contenido

1.	Intr	oducci	ón	1
	1.1.	Motiva	$\operatorname{ción}$	1
	1.2.	Objeti	vo General	2
	1.3.	Objeti	vos Específicos	2
2.	Ant	eceden	tes	3
	2.1.	Fundar	nentos de antenas	3
		2.1.1.	Patrón de radiación	3
		2.1.2.	Directividad	5
		2.1.3.	Ganancia	5
		2.1.4.	Polarización	6
		2.1.5.	Ancho de banda	7
		2.1.6.	Pérdidas y eficiencia	9
		2.1.7.	Ecuación de Friis	10
		2.1.8.	Zona de Fresnel	10
	2.2.	Colecte	pres de radiotelescopios	11
		2.2.1.	Tipos de colectores parabólicos	11
		2.2.2.	Antenas de alimentación	13
	2.3.	Recept	ores heterodinos	14
		2.3.1.	Radio definida por software	14
		2.3.2.	Temperatura de ruido	14
		2.3.3.	Transformada Rápida de Fourier	14
	2.4.	Radiot	elescopios	15
		2.4.1.	Línea de Hidrógeno Neutro	15
		2.4.2.	CHARTS y FRBs	15
		2.4.3.	Astronomical Radio Transients Experiment (ARTE)	15
	2.5.	Telesco	pio CPT	16
	2.6.	Métod	os de caracterización	17
		2.6.1.	Medición de patrón de radiación	17
		2.6.2.	Medición de la temperatura de ruido	18
3.	Ens	amblaj	e e instrumentación	19
	3.1.	Ensam	blado Mecánico	19
		3.1.1.	Reflector Parabólico	20
		3.1.2.	Diagrama general del telescopio	22
		3.1.3.	Diseño de soportes adicionales	22
		3.1.4.	Montura alt-azimutal	26

		3.1.5. Rack de control	28
	3.2.	Alimentador	29
		3.2.1. LPDA de alto ancho de banda	29
		3.2.2. Dipolo de ARTE	30
		323 Antena circular de alto ancho de banda	30
	33	Diseño del receptor	31
	0.0.	3.3.1 Cadena de recepción	31
		3.3.2 Digitalizador y adquisición	30 91
	3 /	Software de control y adquisición	94 22
	0.4.	2.4.1 Control de la monture	ეე ექ
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04 วะ
	25	5.4.2. Adquisición de datos	ეე ელ
	3.5.	Infraestructura de caracterización	30 95
		3.5.1. Fuente de calibración	35
		3.5.2. Fuente de ruido	37
		3.5.3. Software de caracterización	38
1	Car	actorización y puesta en servicio	10
4.		Enfoque del elimentador	±0 40
	4.1.	4.1.1 Druchas de enfoque preliminar	40
		4.1.1. Pruebas de enloque premininar	40 40
	4.0	4.1.2. Pruebas de enfoque definitivas	42
	4.2.	Medicion del patron de radiación	44
		4.2.1. Medición relativa para banda de HI	44
	4.3.	Sensibilidad	44
	4.4.	Medición de la temperatura de ruido	45
	4.5.	Medición del error de apuntamiento	45
	4.6.	Primera luz	45
5	Anó	lisis de Resultados	17
J.	5 1	Posicion del elimentedor	±1 47
	ປ.1. ຮຸດ	Detrén de rediscién	10 10
	0.2. E 0		40
	Ð.ð. ► 4		49 51
	5.4.		51
	5.5.		52 52
	5.6.	Primera luz	53
6.	Con	clusiones	55
•••	6.1.	Trabajos Futuros	55
	0.1.		00
Bi	bliog	rafía	57
۸.			-0
Aľ	$\frac{1}{4}$	B	59 50
	А.	A 1 and trading after a pre-	59 59
		A.1. cpt_tracking_software.py	99 €1
		A.2. $\operatorname{spid.py}$	01 62
		A.3. control.py \ldots	63
		A.4. astrortl.py	66
		A.5. cpt_rtl_adquisition.py	67
		A.6. spectra_avg.py	68

	A.7.	rp_rtl_spectrum.py
В.	Diagra	amas mecanicos
	B.1.	Soporte para tetrápodo
	B.2.	Soporte universal para el alimentador
	В.З.	Soporte para estrella artifical
	B.4.	Soporte para alimentador de alto ancho de banda
	B.5.	Soporte para alimentador del dipolo de ARTE

Índice de Tablas

Índice de Ilustraciones

2.1.	Parámetros del patrón de radiación para una antena con características directi- vas de un haz principla, la definición del ancho haz de media potencia, nulos y	
	lobulos menores. Figura recuperada de Antenna theory and design [2].	4
2.2.	Polarización linear y circular de una onda electromagnética propagándose en el	
	eje Z	6
2.3.	Diagrama de parámetros S para un dispositivo bajo prueba (DUT), donde a la izquierda se encontraria el puerto 1 del instrumento y a la derecha el puerto 2.	7
2.4.	Ancho de banda de reflexión de una antena.	8
2.5.	Figura de una cadena de recepción con un filtro de paso de banda delgado para observaciones astronomicas de HI, con un ancho de banda de 5 MHz con una	
	frecuencia central de 1428 MHz.	8
2.6.	Antena de 12 metros Vertex tipo Cassegrain del observatorio ALMA.	12
2.7.	Telescopio Effelsberg de 100 metros de tipo Gregorian.	12
2.8.	Telescopio GBT (Green Bank Telescope) de 100 metros de tipo off-axis	13
2.9.	Telescopio CPT en el cerro Calán siguiendo el centro de la Galaxia.	17
2.10.	Diagrama de un sistema de medición de patrón de radiación para una antena	
	bajo prueba (AUT) en campo lejano con los sistemas de recepción, control y	
	resgistro. Además de una fuente puntual con un generador de señales	18
3.1.	Herramientas utilizadas para el ensamblado de la superficie del reflector para-	
	bólico. Alicates, cierras de metal, remachadora, tijeras de hojalata, latadro para	
	metal y llaves de tuercas	20
3.2.	Los 12 arcos de aluminio sujetos al centro del reflector parabólico de aproxima-	
	damente 15 kilogramos	21
3.3.	Los tubos de aluminio y la cinta de aluminio para la tensión de la malla metálica	
	instalados radialmente en los soportes.	21
3.4.	Diagrama general del telescopio con sus componentes principales.	22
3.5.	Unión de los soportes de aluminio para el alimentador.	23
3.6.	Interfaz de soporte para el tubo de distribución y otros elementos	24
3.7.	Soporte interno para electrónica de recepción	24
3.8.	Soporte para la fuente de calibración de la copa de agua "estrella artificial".	25
3.9.	Soporte para antena circular de alto ancho de banda para configuración de ali-	~ ~
	mentador	25
3.10.	Soporte para el dipolo de ARTE como alimentador de 1420 MHz	26
3.11.	Rotor BIG - RAS/HR de la compania $RFHamdesign$ instalada en el pedestal con	07
0.10	la montura de acero.	27
3.12.	Montura de acero con los contrapesos de equilibrio instalados.	27
3.13. 2.14	Rack de control con el controlador SPID de la montura y el computador de control.	28
3.14.	Antena LPDA de alto ancho de banda instalada en el telescopio	29

3.15.	Dipolo de ARTE instalado en el telescopio	30
3.16.	Antena de polarización circular de alto ancho de banda instalada en el telescopio.	31
3.17.	Amplificador y filtro pasabanda SAW bird HI de la compañía Noeelec	32
3.18.	RTL-SDR conectada a la cadena de amplificador y una Raspberry PI 4B	33
3.19.	cpt_traking_software.py en funcionamiento	34
3.20.	Parametro S11 para la antena utilizada en la fuente de calibración	36
3.22.	Generador de señales Valon 5008 con filtro pasabajo con una batería externa	37
3.23.	Fuente de ruido Agilent 346B	38
4.1.	Antena LPDA en trípode auxiliar a 2 metros de altura	41
4.3.	Distancia de 70 metros entre el reflector y el generador de señales con elevaciones	
	$similares. \ldots \ldots$	42
4.4.	Distancia de 188 metros entre el reflector y la estrella artificial de la copa de agua.	43
4.5.	Alimentador dipolo de ARTE con tetrápodo instalado a la distancia focal de la	
	párabola a 135 cm	43
5.1.	Antena construida siendo monitoreada por la cámara remota	47
5.2.	Potencia recibida en función de la distancia del alimentador al reflector	48
5.5.	Espectro obtenido por la RTL-SDR a 1428 GHz calibrado a potencia $\ \ldots$.	50
5.6.	Tono de -80 dBm a las frecuencias de interés $\dots \dots \dots$	51
5.7.	Espectro obtenido por la RTL-SDR a 1420 MHz calibrado a potencia $\ .\ .\ .$	53
5.8.	Espectro de la región estandar S9 de calibración [19]	53

Capítulo 1

Introducción

1.1. Motivación

La construcción de un nuevo instrumento de observación astronómica conlleva diversos desafíos, oportunidades y nuevos conocimientos. El posicionamiento de un nuevo radiotelescopio de 3 metros de diámetro es un proyecto que involucra distintos aspectos mecánicos, electrónicos, de radiofrecuencia o RF y de software.

En la cumbre del Cerro Calán, en la ciudad de Santiago, se ubica el Observatorio Astronómico Nacional y el departamento de astronomía de la facultad de ciencias físicas y matemáticas de la Universidad de Chile. Aquí se encuentra el telescopio CPT (CHARTS Pathfinder Telescope), un radiotelescopio de reflector parabólico de 3 metros de diámetro, de superficie de malla metálica y con una montura alt azimutal. En este documento se detalla el proceso de construcción mecánica, electrónica y de software para la caracterización y puesta en servicio de este telescopio.

Las capacidades de observación de un radiotelescopio están determinadas por las características de su antena receptora y sus propiedades de sensibilidad, resolución angular y ancho de banda, las cuales también dependen del propósito de su construcción y de los intereses científicos de los investigadores.

Para el caso del CPT, se busca apoyar al proyecto, Canadian-Chilean array for radio transient studies (CHARTS), en el estudio del fenómeno astrofísico de ráfagas rápidas de radio(del inglés, fast radio burts, FRBs). Para alcanzar este objetivo, se quiere observar la línea de emisión de hidrógeno neutro, a una frecuencia de 1420 MHz, con el propósito de validar la funcionalidad del telescopio para realizar mediciones de radioastronomía, ya que la emisión de hidrógeno neutro o H1 es una de las más estudiadas del espectro de radio.

Luego de la puesta en servicio del telescopio, se espera poder adaptar el receptor para un ancho de banda superior y realizar estudios de interferometría de larga base con otros telescopios, y otras aplicaciones astronómicas.

Durante este trabajo se detallan los procesos de construcción mecánica del reflector parabólico, el ensamblaje de la montura alt azimutal, el diseño y construcción del receptor de radiofrecuencia. También se detallan los trabajos de caracterización del telescopio con la medición de su patrón de radiación, su sensibilidad y resolución angular. Para culminar con su primera luz, un evento en el cual todo telescopio observa por primera vez una fuente astronómica, dando al inicio a su vida útil como instrumento de observación.

1.2. Objetivo General

Ensamblado, integración y puesta en servicio de un radiotelescopio de 3 metros de diámetro para docencia e investigación en nuevas tecnologías para radioastronomía.

1.3. Objetivos Específicos

- 1. Ensamblado Mecánico: Ensamblar el reflector parabólico a utilizar, asegurando su integridad mecánica y funcionamiento del motor en su montura.
- 2. Diseño del receptor: Evaluación de las distintas opciones de diseño de la antena receptora e integrar la electrónica de adquisición para las frecuencias de interés.
- 3. **Primera Luz y Caracterización:** Caracterizar los parámetros de funcionamiento del telescopio y detectar las primeras ondas de radio.
- 4. Observar hidrógeno neutro: Iniciar los estudios astronómicos observando una de las bandas de diseño de 1420 MHz o línea de hidrógeno en la región de calibración S9.

Capítulo 2

Antecedentes

En este capítulo se expondrán los fundamentos necesarios en el desarrollo del proyecto. Se abordarán los principales conceptos y características de las antenas, teniendo en cuenta que por naturaleza un radiotelescopio es una antena. Además, se explicará el funcionamiento de los receptores heterodinos, principal componente utilizado en la de señales de radiofrecuencia (RF) para finalmente, abordar el concepto de radiotelescopio, la importancia de la línea de hidrógeno neutro y el aporte técnico al proyecto CHARTS.

2.1. Fundamentos de antenas

Una antena es un dispositivo usualmente pasivo que convierte radiación electromagnética del espacio en corriente eléctrica y viceversa, dependiendo para qué se utilice, pueden ser configuradas para recibir o transmitir señales. Los radiotelescopios son antenas receptoras. Suele ser fácil calcular las propiedades de una antena transmisora y medir las propiedades de una antena receptora. Afortunadamente, la mayor parte de las propiedades de una antena transmisora (como el patrón de radiación) son equivalentes al usar esta misma antena como receptora, así como cualquier medición de una antena receptora puede ser aplicada a esta antena cuando es usada para la transmisión debido al principio de reciprocidad [1].

2.1.1. Patrón de radiación

El patrón de radiación es una representación gráfica de las propiedades radiativas de una antena. Se define como la distribución de la potencia transmitida por la antena en una esfera de radio constante. Por razones prácticas, se analizan secciones del patrón de radiación, las cuales corresponden a las curvas tridimensionales obtenidas en la intersección de la esfera con planos perpendicular que pasan por el origen.

Para medir la potencia radiada por una antena, es necesario utilizar la aproximación de campo lejano. El campo lejano es la distancia a la que debe ubicarse una fuente puntual para que las ondas recibidas sean planas y se pueda obtener la radiación en potencia sin componentes magneticos utilizando unicamente el campo eléctrico [1].

Campo Lejano

La definición de la distancia de campo lejano depende tanto de la longitud de onda λ como la maxima extensión del colector D, o diámetro para antenas de apertura parabólicas. La distancia de campo lejano se define como la distancia perpendicular a la propagación R:

$$R = \frac{2D^2}{\lambda} \tag{2.1}$$

Se utiliza las definiciones de campo eléctrico normalizado y potencia normalizada para poder expresar el patrón de radiación en decibelios. Utilizando el máximo como el valor de referencia. La potencia normalizada se define como:

$$\vec{F}(\theta,\phi) = \frac{E(\theta,\phi)}{\max|\vec{E}(\vec{\theta},\phi)|}$$
(2.2)

$$P(\theta,\phi) = ||\vec{F}(\theta,\phi)||^2$$
(2.3)

$$P(\theta, \phi)_{\rm dB} = 10\log P(\theta, \phi) = 20\log |\vec{F}| = F(\theta, \phi)$$
(2.4)

Figura 2.1: Parámetros del patrón de radiación para una antena con características directivas de un haz principla, la definición del ancho haz de media potencia, nulos y lobulos menores. Figura recuperada de *Antenna theory and design* [2].

La figura 2.1, muestra un patrón de radiación de una antena directiva, donde se pueden observar los lóbulos menores o lóbulos laterales y el haz principal. El haz principal es la dirección de máxima radiación, mientras que los lóbulos laterales son las direcciones de radiación de menor potencia.

El haz principal se define en términos de potencia y se conoce como HPBW o haz de media potencia. El HPBW es el ángulo entre los puntos de la curva de radiación que tienen la mitad de la potencia máxima, es decir donde se ve una disminución de 3 dB.

2.1.2. Directividad

La directividad (D) se define como la razón de intensidad de radiación en una dirección específica con respecto a la intensidad promedio de radiación en todas las direcciones. Es común referirse a la directividad no en función de los ángulos, sino por su valor máximo.

$$D = \frac{U(\theta, \phi)}{U_{\text{prom}}} \tag{2.5}$$

Donde $U(\theta, \phi)$ es la densidad de potencia radiada en una dirección específica y U_{prom} es la densidad de potencia promedio. Lo que da a entender que la directividad es siempre adimensional.

La directividad se puede obtener directamente del patrón de radiación de la antena. Para esto se define un haz de ángulo sólido $d\Omega$ y se integra sobre la superficie de una esfera de radio R.

$$\Omega_A = \iint_{\text{esfera}} |F(\theta, \phi)|^2 d\Omega$$
(2.6)

El ángulo sólido de un haz en un patrón de radiación corresponde al área en la que la intensidad de radiación alcanza su valor máximo.

$$P = U_{\rm prom}\Omega_A \tag{2.7}$$

Finalmente, si se reemplaza la ecuación (2.6) en la ecuación (2.7) se obtiene la directividad de la antena a partir del ángulo sólido del haz del patrón de radiación.

$$D = \frac{4\pi}{\Omega_A} \tag{2.8}$$

Esto quiere decir que la directividad está completamente definida por la forma del patrón de radiación. Garantizando su completa independencia respecto al diseño físico de la antena [2].

2.1.3. Ganancia

La ganancia de una antena se define como la potencia transmitida en una dirección específica con respecto a la potencia transmitida por una antena isotrópica. La ganancia se define como:

$$G = \frac{4\pi U_{\text{max}}}{P_{\text{in}}} \tag{2.9}$$

Donde U_m es la densidad de potencia máxima y P_{in} es la potencia de entrada a la antena. La ganancia también se puede representar como la directividad multiplicada por la eficiencia de la antena,

$$G = \varepsilon D. \tag{2.10}$$

La eficiencia de una antena se define como la razón de la potencia radiada por la antena a la potencia total suministrada a la antena.

$$\varepsilon = \frac{P_{\rm rad}}{P_{\rm in}}.\tag{2.11}$$

En el caso particular de una antena de apertura, el término de la eficiencia también incluye factores como la iluminación de la antena y las pérdidas de la superficie, las cuales se denominan eficiencia de apertura y eficiencia de superficie respectivamente.

$$\varepsilon_{ap} = e_r \varepsilon_t \varepsilon_s \varepsilon_a \tag{2.12}$$

Donde e_r es la eficiencia de la radiación, ε_t es la eficiencia *taper* o de cobertura, ε_s de *spillover* o de derrame y ε_a es la eficiencia de *achivement* o de completitud, la cual incluye muchas otras fuentes de pérdidas [2].

Así, la ganancia de una antena de apertura es directamente proporcional a su apertura física y a la longitud de onda de la señal que se desea recibir,

$$G = \frac{4\pi A}{\lambda^2} = \varepsilon_{ap} D, \qquad (2.13)$$

A es el área efectiva de apertura de la antena y λ es la longitud de onda.

2.1.4. Polarización

La polarización de una antena es el plano de progagación de la onda electromagnética irradiada en una dirección dada por la antena transmisora. Se describe como la orientación del campo eléctrico de la onda.

Figura 2.2: Polarización linear y circular de una onda electromagnética propagándose en el eje Z.

Los tipos de polarización se dividen en polarización lineal, polarización circular y la combinación de ambas, la polarización elíptica y no polarizada. La figura 2.2a muestra una onda electromagnética linealmente polarizada en orientación vertical. La figura 2.2b muestra una onda electromagnética circularmente polarizada en sentido horario con respecto al transmisor.

2.1.5. Ancho de banda

El rango de frecuencia en el cual una antena opera cumpliendo con su desempeño definido se le denomina como ancho de banda. El ancho de banda se define considerando los parámetros de reflexión y de radiación de potencia, siendo comúnmente utilizados los parámetros de reflexión S_{11} y transmisión S_{21} de una antena para esta caracterización.

Los parámetros S son los que definen la respuesta de un dispositivo de dos puertos a una onda electromagnética. Existen los parámetros S_{11} , S_{12} , S_{21} y S_{22} , donde S_{11} es el parámetro de reflexión, S_{12} es el parámetro de transmisión, S_{21} es el parámetro de transmisión inversa y S_{22} es el parámetro de reflexión inversa.

Figura 2.3: Diagrama de parámetros S para un dispositivo bajo prueba (DUT), donde a la izquierda se encontraria el puerto 1 del instrumento y a la derecha el puerto 2.

La figura 2.3 muestra las diferentes configuraciones para lograr la obtención de los parámetros S.

Ancho de banda S_{11}

El ancho de banda de reflexión se define como el rango de frecuencia en el cual el parámetro de reflexión S_{11} es menor a un valor específico, comúnmente -10 dB. Lo que corresponde a que el 90% de la potencia inyectada es irradiada y solo el 10% reflejada

Figura 2.4: Ancho de banda de reflexión de una antena.

La figura 2.4 muestra el ancho de banda de reflexión de una antena.

Ancho de banda S_{21}

El ancho de banda de transmisión se define como el rango de frecuencia en el cual el parámetro de transmisión S_{21} es mayor a un valor específico, comúnmente lo más cercano a 0 posible, sin embargo, cuando se utilizan componentes activos como cadenas de amplificación, este valor suele aumentar de 0 dB, lo que significa realizar un estudio más profundo del valor esperado.

Figura 2.5: Figura de una cadena de recepción con un filtro de paso de banda delgado para observaciones astronomicas de HI, con un ancho de banda de 5 MHz con una frecuencia central de 1428 MHz.

La figura 2.5 muestra el ancho de banda de un filtro de pasabanda definiendo la figura de una cadena de recepción o transmisión.

2.1.6. Pérdidas y eficiencia

En la propagación de ondas electromagnéticas se producen pérdidas de varias fuentes, las relacionadas con la geometría son las pérdidas de espacio libre y las pérdidas óhmnicas por el medio de transmisión, pero en el contexto de una antena de apertura de reflector parabólico, se encuentran también las pérdidas de superficie y las pérdidas de alimentación.

Impedancia de entrada

Los sistemas de radiofrecuencia se caracterizan por tener una impedancia asociada a la entrada y salida de los componentes que forman un sistema. Propiamente la impedancia no significa una pérdida en sí misma, pero si existen diferencias de acoplamiento de impedancia pueden empezar a encontrar pérdidas asociadas.

Como práctica común, se busca que la impedancia tanto de salida como entrada de los elementos de un sistema de RF sea de 50 Ω , pero también existen otros estándares de impedancia como los utilizados en sistemas de televisión e internet, los cuales están estandarizados a 75 Ω .

No todas las antenas una vez construidas tienen una impedancia intrínseca de 50 Ω , por lo que se deben utilizar elementos de adaptación de impedancia para lograr la mejor transferencia de potencia.

Pérdidas de espacio libre

Las pérdidas de espacio libre son las pérdidas asociadas a la propagación de ondas electromagnéticas en el espacio. Las perdidas de espacio libre son inversamente proporcional al cuadrado de la distancia y directamente proporcional al cuadrado de la longitud de onda.

$$L_{\rm fs} = 20\log\left(\frac{4\pi d}{\lambda}\right) \tag{2.14}$$

Donde d es la distancia de propagación y λ es la longitud de onda de la señal.

Pérdidas de superficie

Las pérdidas de superficie están asociadas al término de eficiencia de superficie de las antenas de apertura. Estas pérdidas se deben a las imperfecciones en la superficie en relación con la longitud de onda de la señal. Se puede entender que para una longitud de onda muy grande (entre 70 cm y 10 cm) si la superficie presenta imperfecciones menores a 1 cm se puede hablar de una superficie perfecta.

Lo anterior da la posibilidad de utilizar superficies agujereadas o con perforaciones para reducir el peso de la antena y mejorar la eficiencia de la superficie por imperfección de curvatura. Por lo general, se puede utilizar un criterio de error de superficie aceptable como el siguiente,

$$\varepsilon_s = \frac{\lambda}{16}.\tag{2.15}$$

Pérdidas ohmnicas

Las pérdidas ohmnicas son las pérdidas asociadas a la resistencia de los materiales conductores de la antena. Estas pérdidas son inversamente proporcionales a la corriente que circula por el conductor y al cuadrado de la resistencia del conductor.

$$P_{ohm} = I^2 R \tag{2.16}$$

Donde P_{ohm} es la potencia disipada por pérdidas ohmnicas, I es la corriente que circula por el conductor y R es la resistencia del conductor.

Estos efectos se aprecian al utilizar conductores coaxiales con pérdidas por distancia y por pérdidas dielectricas según sus materiales. También influyen los materiales utilizados en la construcción de la antena.

2.1.7. Ecuación de Friis

La ecuación de Friis es una fórmula de transmisión para un circuito de radiofrecuencia compuesto por dos antenas, una antena transmisora u otra receptora en espacio libre [3]. La ecuación se define como:

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2. \tag{2.17}$$

Donde P_r es la potencia recibida, P_t es la potencia transmitida, G_t es la ganancia de la antena transmisora, G_r es la ganancia de la antena receptora, λ es la longitud de onda de la señal y d es la distancia de propagación.

2.1.8. Zona de Fresnel

La zona de Fresnel es una zona delimitada por elipsoides que rqodian la línea de vista entre una antena transmisiora y una receptora. Esta zona define si un obstaculo en la línea de vista interfiere significativamente en la potencia de la señal.

La zona de Fresnel, consiste en multiples zonas elipsoidales definidas por numeros (1, 2, 3, 4, ..., n), siendo la zona 1 la que contiene la señal con mayor potencia con un 60 % de la potencia total del enlace [4].

Se puede obtener el radio de la zona de Fresnel utilizando la siguiente ecuación para cada punto en la el camino de la línea de vista.

$$r_n = \sqrt{\frac{n\lambda d_1 d_2}{d_1 + d_2}} \tag{2.18}$$

Donde r_n es el radio de la zona de Fresnel, n es el número de la zona, λ es la longitud de onda de la señal, d_1 es la distancia entre la antena transmisora y el punto en la zona de Fresnel y d_2 es la distancia entre el punto en la zona de Fresnel y la antena receptora.

Para que un obstaculo no interfiera significativamente en la transmision de la señal en el aire, se debe mantener a lo menos la primera zona de Fresnel (n=1) libre.

2.2. Colectores de radiotelescopios

Un colector parabólico es una antena de apertura que se compone de una superficie reflectante parabólica y una antena alimentadora. Se caracterizan por tener una alta directividad y ganancia, por lo que son utilizadas en aplicaciones de comunicación de largo alcance y en radiotelescopios, donde se requiere una alta sensibilidad y un campo de vision limitado

2.2.1. Tipos de colectores parabólicos

Los reflectores parabólicos se pueden clasificar en 4 tipos de configuraciones, *Cassegrain*, *Gregorian*, *off-axis* o fuera de eje y *axial feed* o Foco Primario.

Cassegrain

Las antenas de tipo Cassegrain, son aquellas que utilizan un reflector secundario para redirigir la radiación hacia la antena alimentadora. El reflector secundario es un hiperboloide de revolución que se ubica en el foco de la parábola principal y se orienta hacia la antena alimentadora.

Un ejemplo de este tipo de antena son las antenas que conforman el telescopio Atacama Large Millimeter/Sub-Millimeter Array (ALMA). Es el radiotelescopio más poderoso que existe en la Tierra. Ubicado en el llano de Chajnantor en el Desierto de Atacama [5].

Figura 2.6: Antena de 12 metros Vertex tipo Cassegrain del observatorio ALMA.

Gregorian

Las antenas de tipo Gregorian, son aquellas que utilizan un reflector secundario para redirigir la radiación hacia la antena alimentadora. El reflector secundario es un elipsoide de revolución que se ubica en el foco de la parábola principal y se orienta hacia la antena alimentadora.

Figura 2.7: Telescopio Effelsberg de 100 metros de tipo Gregorian.

Off-axis

Las antenas de tipo *off-axis* o fuera de eje, son aquellas en las cuales la antena alimentadora se encuentra fuera del eje de la parábola principal, extendiendo el reflector principal. Este tipo de antenas se utilizan en aplicaciones donde se requiere una mayor área de cobertura reduciendo la obstrucción de la antena alimentadora.

Figura 2.8: Telescopio GBT (Green Bank Telescope) de 100 metros de tipo *off-axis*.

Foco primario

Las antenas de tipo foco primario, son aquellas donde la antena alimentadora se encuentra en el foco de la parábola principal. Este tipo de antenas son más simples de construir, pero tienen otros desafíos ópticos y de diseño.

2.2.2. Antenas de alimentación

Las antenas alimentadoras son aquellas que en un radiotelescopio estan ubicadas en el foco de la parábola principal que capturan la radiación concentrada por el reflector. Estas antenas deben tener un patrón de radiación adecuado para el tipo de diseño de la antena parabólica.

Las antenas alimentadoras pueden ser de distintos tipos, como antenas de parche, antenas de bocina, antenas Yagui-Uda, antenas log-periódicas, antenas de semiespacio, *microstrip*, entre otras. El tipo de antena alimentadora a utilizar dependerá del tipo de antena parabólica y de la aplicación de la antena, sin embargo, las antenas de bocina son las más utilizadas en antenas parabólicas de reflector secundario.

2.3. Receptores heterodinos

Los receptores comúnmente utilizados en radioastronomía son bastante similares a los utilizados en telecomunicaciones. El rol principal de estos receptores es convertir las señales incidentes a un rango de frecuencia menor conservando la fase y la amplitud, esta frecuencia se le conoce como frecuencia intermedia (IF), la cual es procesada a posteriori para extraer su información [6].

Un receptor heterodino utiliza un mezclador para realizar la conversión de frecuencia a IF, este es un dispositivo no lineal que procesa las señales con una señal de referencia conocida como oscilador local.

2.3.1. Radio definida por software

Una radio definida por software, del inglés *Software Defined Radio* (SDR), es un receptor heterodino con un oscilador reprogramable y entrega la señal de IF a un computador para su procesamiento. Estos receptores se pueden reconfigurar para sintonizar distintas frecuencias, para luego entregar las muestras digitales a un computador y así procesar la señal, como por ejemplo, realizar una transformada de Fourier para obtener el espectro de la señal.

2.3.2. Temperatura de ruido

La temperatura de ruido, es una forma de representar el ruido intrinseco de un receptor a partir de sus características electronicas y la temperatura ambiente. Esta temperatura se define como la razón señal a ruido de la señal que entra al receptor con la señal de salida [7].

Este ruido también delimita el piso de ruido del receptor y determina la sensibilidad del receptor. Se calibra esta temperatura con una fuente termica conocida para determinar la escala absoluta de potencia que se puede medir.

$$T_{\rm sys} = T_0(F-1), \tag{2.19}$$

Donde T_{sys} es la temperatura de ruido del sistema, T_0 es la temperatura de referencia, F es el factor de ruido del receptor.

Una de las tecnicas más utilizadas para determinar el factor de ruido es el Y-factor que será desarrollado más adelante.

2.3.3. Transformada Rápida de Fourier

La transformada rápida de Fourier (FFT), es un algoritmo que permite calcular la transformada discreta de Fourier. Proceso el cual transforma una señal en su dominio original, usualmente tiempo, a una representación del dominio de la frecuencia. La transformada se obtiene computando una secuencia de valores a componentes de frecuencia, obteniendo el espectro de la señal [8].

La transformada discreta de Fourier se define como:

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}kn}$$
(2.20)

Donde X(k) es la transformada discreta de Fourier, x(n) es la señal en el dominio del tiempo, N es el número de muestras y k es el índice de frecuencia.

2.4. Radiotelescopios

Tal como los telescopios ópticos que concentran la luz visible en un foco, la amplifican y procesan para que sea analizada por diversos instrumentos, también los radiotelescopios concentran la luz de las ondas de radio de fuentes astronomicas. Estos telescopios son diseñados para observar las ondas de la luz, desde 1 mm a 10 m de longitud de onda [9].

Un radiotelescopio posee una ventaja única en su adquisición. La radiación observada es coherente, por lo que existen los amplificadores y digitalizadores coherentes, los cuales mantienen la información de la fase de la señal. Esta cualidad permite la construcción de interferómetros y telescopios de apertura sintética [1].

2.4.1. Línea de Hidrógeno Neutro

El movimiento de un electrón en un átomo de hidrógeno neutro genera un campo magnético que se acopla con los espines del protón y el electrón. "Este acople da cuenta de la radiación a 1420 MHz que viene de la transición entre dos niveles energéticos del nivel fundamental del Hidrógeno" [10].

La línea de hidrógeno neutro o HI, es una de las líneas espectrales más importantes en radioastronomía, ya que permite observar la distribución de gas en las galaxias y la evolución del universo primitivo. También es una de las más estudiadas y catalogadas por muchos otros telescopios.

2.4.2. CHARTS y FRBs

Los fenómenos astrofísicos transitorios de radio como los FRBs, son eventos de duración desde milisegundos a microsegundos y origen desconocido que ocurren en un amplio rango de frecuencias. Estos pulsos inspiraron el proyecto CHARTS, para apoyar su búsqueda y estudio.

El proyecto CHARTS, es una colaboración entre la Universidad de Chile y de la University of Toronto con el objetivo de construir un arreglo de 256 antenas sintonizadas para operar en el rango de 300-500 MHz en el marco de la búsqueda de FRBs en tiempo real.

2.4.3. Astronomical Radio Transients Experiment (ARTE)

Arte es un radiotelescopio diseñado como un experimento para detectar FRBs provenientes del centro de la Galaxia y monitorear llamaradas solares. Este telescopio se compone de un arreglo de 12 antenas de parche para la banda 1300 a 1900 MHz montadas sobre una montura ecuatorial. Posee una arquitectura de recepción basada en digitalizadores con matrices de puertas lógicas programables en campo (FPGA) [11].

Este telescopio se encuentra, al igual que el CPT, en la cumbre del cerro Calán en Santiago de Chile. Este es un proyecto experimental del departamento de astronomía del Laboratorio de Ondas Mililimetricas y Sub-milimetricas (MWL).

2.5. Telescopio CPT

El telescopio *CHARTS Pathfinder Telescope* (CPT), es un telescopio de 3 metros de diámetro con una configuración de foco primario. Este telescopio se encuentra en la cumbre del cerro Calán en Santiago de Chile, siendo parte del departamento de ingeniería eléctrica, en cooperacion con departamento de astronomía, de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile.

El reflector de este telescopio es un paraboloide de 3 metros de diámetro, con una estructura de aluminio unida con remaches y pernos. Su superficie reflectante es de malla de acero galvanizado con separación de 6 mm, el anillo exterior es de una cinta de aluminio de 3×20 mm. El soporte del alimentador es de 4 perfiles de aluminio de 2×2 cm de 2 metros de largo [12].

La eficiencia de superficie que estima el fabricante es de 65% teniendo su ganancia máxima a 5760 MHz con 43.3 dB y a 1296 MHz con 30.3 dB. Tanto el reflector como la montura alt-azimutal son de la compañía holandesa *RFHamdesign* [12].

Figura 2.9: Telescopio CPT en el cerro Calán siguiendo el centro de la Galaxia.

El propósito para poner en servicio este telescopio es apoyar al proyecto CHARTS en la banda de 300 MHz a 500 MHz para la busqueda de FRBs. Para lograr este objetivo se quiere observar la línea espectral de hidrógeno neutro de 21 cm de longitud de onda, para caracterizar todos los aspectos de la antena y comenzar a realizar observaciones de radioastronomía. Luego se ampliarán sus capacidades para y hacer observaciones solares de alto ancho de banda desde 300 MHz a 6 GHz.

2.6. Métodos de caracterización

Los siguientes métodos son los más comunes en la caracterización de antenas y radiotelescopios para medir su desempeño y definir sus capacidades como instrumentos astronómicos.

2.6.1. Medición de patrón de radiación

El método más directo para la medición del patrón de radiación es el de campo lejano y al tratarse de antenas de apertura de grandes dimensiones, presenta varios desafíos prácticos y técnicos, especialmente a altas frecuencias [13].

Figura 2.10: Diagrama de un sistema de medición de patrón de radiación para una antena bajo prueba (AUT) en campo lejano con los sistemas de recepción, control y resgistro. Además de una fuente puntual con un generador de señales.

La figura 2.10 muestra un diagrama de un sistema básico necesario para poder realizar la medición, el cual requiere la antena objetivo, la que se quiere caracterizar. La antena fuente, que es la que generará la radiación para medir la antena objetivo. Además de todo el equipo e instrumentación necesaria.

2.6.2. Medición de la temperatura de ruido

Para medir la temperatura de ruido de un sistema, se puede utilizar el método de factor Y, el cual consiste en utilizar una fuente de ruido de ENR, conocida como (ENR) o la relación de exceso de ruido, la cual se conecta a la antena y se mide la potencia de ruido en la salida del receptor.

La medición se realiza obteniendo la temperatura del sistema cuando se enciende la fuente de ruido y cuando se apaga, siendo estas temperaturas como T_{hot} y T_{cold} o temperatura caliente y temperatura fría respectivamente.

El ruido de ENR se obtiene a 2 "temperaturas de ruido" conocidas, una a temperatura ambiente y otra a la temperatura con la fuente encendida.

$$ENR = \frac{T_{hot} - 290}{290},\tag{2.21}$$

Considerando la temperatura ambiente como 290 grados K. ENR se logra polarizando la fuente de ruido y para obtener el factor Y utilizamos la siguiente ecuación:

$$Y = \frac{\frac{T_{\text{hot}}}{T_{\text{cold}}} + \frac{T_{\text{noise}}}{T_{\text{cold}}}}{1 + \frac{T_{\text{noise}}}{T_{\text{cold}}}}$$
(2.22)

Donde T_{noise} es la temperatura de ruido del sistema. Así para obtener la figura de ruido se necesita el factor de ruido F, $F = T_{\text{noise}}/T_{\text{cold}} + 1$, para luego reemplazarlo en $NF = 10\log(F)[14]$.

Capítulo 3

Ensamblaje e instrumentación

En este capítulo se presentarán todos los detalles del ensamblado del reflector parabólico, la instalación del rotor y la integración de estos con el soporte de la montura en el pedestal construido para el telescopio. También se detallarán todos los instrumentos evaluados y seleccionados para la construcción del receptor de radiofrecuencia, el rack de control y la infraestructura de caracterización.

Junto con esto, se mostrarán todas las piezas diseñadas e impresas en 3D para el soporte del alimentador y todos los soportes específicos que se necesitaron para la instalación de los distintos componentes del telescopio.

Para finalizar con la descripción del software creado para la operación, mantenimiento y caracterización del telescopio.

3.1. Ensamblado Mecánico

Tanto el reflector parabólico como la montura alt-azimutal y su correspondiente controlador, son elementos adquiridos de la compañía *RFHamdesign*, una empresa holandesa que se especializa en la construcción de telescopios de radio aficionados. El reflector de 3 metros se encontraba completamente desarmado y con piezas que requerían ser modificadas y ensambladas para su correcto funcionamiento.

Para todo el ensamblado se utilizaron herramientas manuales y eléctricas, como taladros, tijeras de hojalata, remachadoras, etc.

Figura 3.1: Herramientas utilizadas para el ensamblado de la superficie del reflector parabólico. Alicates, cierras de metal, remachadora, tijeras de hojalata, latadro para metal y llaves de tuercas.

En la figura 3.1 se pueden ver las herramientas utilizadas para el ensamblado de la superficie del reflector parabólico además de las piezas que requerían de modificación adicional para la instalación correcta.

3.1.1. Reflector Parabólico

Las piezas del reflector se dividen en los 12 arcos, o costillas de aluminio que conforman la estructura que da forma a la superficie parabólica, con un centro de aluminio donde estas 12 piezas se unen con pernos

Figura 3.2: Los 12 arcos de aluminio sujetos al centro del reflector parabólico de aproximadamente 15 kilogramos.

En la figura 3.2 se pueden ver los 12 arcos de aluminio sujetos a los discos de distribución, que además es el punto de anclaje para el soporte de la montura.

Luego se desenrollaron y enderezaron los tubos de aluminio que conforman los anillos donde se tensaron las mallas metálicas que definen la superficie del reflector. Con la misma lógica se tomó la cinta de aluminio, que es aproximadamente de 4 mm de espesor, para enderezarla y prepara las perforaciones para los primeros remaches.

Figura 3.3: Los tubos de aluminio y la cinta de aluminio para la tensión de la malla metálica instalados radialmente en los soportes.

3.1.2. Diagrama general del telescopio

Por el ambito mecanico, el telescopio se compone de 4 partes principales, el relfector parabolico, la montura alt-azimutal con su rotor, el alimentador y el receptor de radiofrecuencia.

Figura 3.4: Diagrama general del telescopio con sus componentes principales.

En la figura 3.4 se puede ver como se enamblan cada una de las piesas del telescopio de forma conceptual, sin embargo, en la práctica se requiere de soportes adicionales para poder asegurar cada una de las piezas. En la siguiente sección se detallarán los soportes adicionales diseñados e impresos en 3D para el telescopio.

3.1.3. Diseño de soportes adicionales

Para poder instalar todos los componentes del telescopio, se debió fabricar soportes personalizados y adicionales para así poder utilizar receptores y elementos que no fueran parte del kit original del fabricante. Con el objetivo de reducir los tiempos de fabricación y prototipado al usar componentes de aluminio o acero se decidió utilizar impresión 3D con filamento plástico PLA¹ de alta resistencia mecánica.

Se diseñaron 6 piezas en total con el software de diseño asistido por computadora o *CAD Fusion 360* de la compañía *Autodesk*. Todos los componentes fueron impresos en PLA de alta resistencia o *Hyper-PLA* de la compañía *Creality*, otorgando una mayor resistencia a

 $^{^1\,}$ PLA del inglés Ácido Poliláctico, es un termo plástico sostenible utilizado en la impresión 3D

la flexión de 50 % que el PLA convencional y una elongación de 6.304 % en comparación con la del PLA convencional de 3%. La configuración de la impresión fue una altura de capa de 0.2 mm, dada por la boquilla utilizada, 4 capas de muralla y un *Infill* o relleno de 60%.

Una ventaja importante en la elección de la impresión 3D en filamentos plásticos, es su baja incidencia en la deformación o interferencia del comportamiento de radiofrecuencia, al ser un material no conductor introducido en el campo cercano de los componentes.

Se puende consultar los dibujos mecanicos con medidas y caraterísticas en el anexo ??.

Figura 3.5: Unión de los soportes de aluminio para el alimentador.

El diseño 3D de la figura 3.5 es un soporte que contiene una cavidad centrar cilíndrica que cumple la función de sostener tanto el alimentador como el receptor por medio de un tubo plástico de PVC^2 que asegura que todo se mantenga alineado con el centro de la parábola, además de permitir un movimiento en el eje de la cavidad cilíndrica para ajustar el foco del alimentador.

Tiene 4 ranuras perforadas para asegurar los soportes con pernos M4 de medida y también 6 perforaciones con cavidades para tuercas M5. Con estas tuercas y con los respectivos tornillos se asegura la posición del tubo de PVC para fijar el foco una vez encontrado.

Las siguientes piezas comparten la misma filosofía de diseño, para poder ser compatibles entre ellas y con el resto de los componentes del telescopio. Además, permiten el rediseño de nuevas piezas para otros alimentadores, cambios de largo en el tubo distribuidor de PVC y en la elección de otro material de impresión 3D si se quisiese.

 $^{2^{\}circ}$ PVC, cloruro de polivinilo, polimero plástico

Figura 3.6: Interfaz de soporte para el tubo de distribución y otros elementos

La figura 3.6 es un soporte multipropósito que permite acoplar otros soportes de menor complejidad para ser instalados en la zona del alimentador y receptor. Así permite cambios en la instrumentación que se requiera en el futuro sin tener que rediseñar toda la estructura de sujeción.

Figura 3.7: Soporte interno para electrónica de recepción

El receptor de radiofrecuencia se encuentra dentro de una caja eléctrica a prueba de agua, pero se requiere un soporte interno para asegurar que la placa de adquisición de datos y el digitalizador se mantengan en su lugar mientras el telescopio se mueve en distintas elevaciones. La figura 3.7 es un soporte que se instala en la caja eléctrica y permite montar diferentes tipos de receptores y amplificadores.

Figura 3.8: Soporte para la fuente de calibración de la copa de agua "estrella artificial"

La figura 3.8 es un soporte que fue diseñado para instalar la fuente de calibración de la copa de agua o "estrella artificial" en parte superior de la copa de agua del cerro Calán. Se divide en 2 piezas que se unen por medio de pernos M4 de plástico para sujetar la antena circular por presión y con tornillos pasantes. Además, para poder asegurar este soporte con facilidad y rapidez, se diseñó la forma de cruz para que por medio de amarras plásticas se pueda asegurar a la baranda de la copa de agua.

Figura 3.9: Soporte para antena circular de alto ancho de banda para configuración de alimentador

Para las mediciones de baja frecuencia (menores a 600 MHz) se debe utilizar la misma antena circular de la figura 3.8 pero con un soporte diferente. La figura 3.9 es un soporte que permite colocar la antena como alimentador del telescopio por medio del tubo de PVC y asegurarla con pernos M4 al este y pernos plásticos M3 para la antena y el soporte.

Figura 3.10: Soporte para el dipolo de ARTE como alimentador de 1420 MHz

Al igual que en la figura 3.9, la figura 3.10 es un soporte que permite colocar el dipolo de ARTE como alimentador del telescopio por medio del tubo de PVC. Diferenciándose del soporte anterior, este diseño permite asegurar la placa de la antena con la deformación forzada del material impreso, evitando el uso de pernos y tuercas.

3.1.4. Montura alt-azimutal

El rotor utilizado para la montura alt-azimutal es el modelo BIG-RAS/HR de la compañía RFHamdesign [15] está diseñado para soportar una carga de hasta 319 kg, con una velocidad de movimiento de hasta 2.5 grados por segundo y una resolución de 0.1 grados para sus codificadores de posición.

Figura 3.11: Rotor BIG-RAS/HR de la compañía RFHamdesign instalada en el pedestal con la montura de acero.

En la figura 3.11 se puede ver el rotor instalado en el pedestal de acero con la montura que hace la interfaz entre los motores y el reflector. La montura tiene unos brazos traseros perforados para instalar los contrapesos de equilibrio y compensar el torque que ejerce la masa del reflector. La pieza que une la montura con el rotor es una tubería de acero galvanizado de 46.5 mm de diámetro, cortada a la medida de la montura. Todos los pernos de sujeción son M10 de cabeza hexagonal.

Figura 3.12: Montura de acero con los contrapesos de equilibrio instalados.

En la figura 3.12 se pueden ver los contrapesos de equilibrio instalados en la montura de acero. Los contrapesos son ladrillos de una mezcla de plomo y cemento de 10 kg cada uno. Se instalaron 4 ladrillos en total a una distancia de 78 cm de del eje con la tubería, lugar donde sin ejercer ninguna fuerza sobre la antena o la montura se equilibra con los pernos de

sujeción completamente desajustados.

La montura es capaz de moverse en 400 grados en azimuth y 180 grados en elevación, con un rango de movimiento de -40 a 360 en los motores horizontales y de 0 a 180 para los motores verticales. Los cuales para mantener rangos de seguridad la montura se mueve entre 0 a 180 grados en azimuth y elevación, así se minimiza el riesgo de enrollado de los cables al girar. En la sección de software se explicará el funcionamiento del algoritmo de movimiento.

3.1.5. Rack de control

El rack de control se encuentra en el edificio más cercano al telescopio, el edificio del meridiano, donde también se encuentra el telescopio ARTE. El rack consiste en un gabinete de 12 unidades de rack o U completamente de acero tanto su cuerpo como la puerta frontal. Con el objetivo de minimizar la interferencia de radiofrecuencia (RFI) que pueda ser introducido por los componentes electrónicos, se utilizó un gabinete completamente cerrado y con una puerta frontal de acero conectado a la tierra local.

Figura 3.13: Rack de control con el controlador SPID de la montura y el computador de control.

En la figura 3.13 se puede ver el rack de control con los siguientes elementos ordenados verticalmente: el switch de red, el inyector POE^3 del receptor, la fuente de alimentación múltiple, el controlador de la montura $SPID^4$, el computador de control y observación. Estos

³ Protocolo de energización por cables ethernet con su sigla en inglés, POE Power Over Ethernet

 $^{^4}$ SPID es el nombre de la serie de rotores para antenas de la compañía RFH amdesign

elementos se encuentran en la sala de recepción de ARTE que cuenta con un sistema de climatización que mantiene la temperatura constante a 16 grados Celsius.

3.2. Alimentador

Para el alimentador se evaluaron distintas opciones de antenas según su desempeño de ganancia y ancho de banda. Las frecuencias de operación del telescopio son de 1420 MHz para la banda de hidrógeno y de 300 a 500 MHz para la banda de CHARTS.

Como una de las características de la construcción del telescopio es la capacidad de intercambiar su alimentador con la estandarización de los soportes, se decidió utilizar antenas comerciales que cumplieran con los requerimientos de operación y se acercaran al rendimiento que declara el fabricante para esta superficie.

3.2.1. LPDA de alto ancho de banda

La antena log-periódica de dipolo (LPDA) de alto ancho de banda es una antena que se caracteriza por tener una ganancia de 10 dBi y un ancho de banda de 300 a 6000 MHz. Esta antena se instaló con el elemento más pequeño del arreglo de dipolos en el foco de la parábola. Se orientó con la cara plana de la antena perpendicular con el plano del suelo.

Figura 3.14: Antena LPDA de alto ancho de banda instalada en el telescopio.

La antena de la figura 3.14 se instaló en el soporte de la figura 3.9 y se conectó al receptor por medio de un cable coaxial de 50 Ω y 1.5 m de longitud.

3.2.2. Dipolo de ARTE

El dipolo de ARTE es una antena que forma el arreglo del telescopio ARTE [16] esta antena se caracteriza por tener un ancho de banda de 700 MHz desde 1000 MHz hasta 1700 MHz para el diseño impreso instalado en el telescopio. Esta antena tiene una ganancia de 3 dBi y se ubica en el foco de la parábola a 135 cm de la superficie.

Figura 3.15: Dipolo de ARTE instalado en el telescopio.

Esta antena tiene la particularidad de que tiene la ganancia recomendada por el fabricante del reflector para utilizar como alimentador a la distancia de 135 cm. Como se puede ver en la figura 3.15 la antena de PCB se encuentra instalada en el tubo de PVC con el soporte diseñado de la figura 3.10.

3.2.3. Antena circular de alto ancho de banda

Esta antena es la misma que la utilizada en la fuente de calibración de la copa de agua, en este caso se quiso utilizar como alimentador en reemplazo de la LPDA de la figura 3.14. Esta antena tiene una ganancia cercana a 3 dBi, semejante a la del dipolo de ARTE y lo que se recomienda para el reflector. La antena se instala en el soporte de la figura 3.8.

Figura 3.16: Antena de polarización circular de alto ancho de banda instalada en el telescopio.

3.3. Diseño del receptor

Para el receptor se optó por utilizar una SDR de bajo costo, un filtro pasabanda optimizado para la observación de la banda de HI y un amplificador de bajo ruido. Se tomó en cuenta que estos componentes deben no solo ser de alta precisión, sino que también robustos, ya que estarán ubicados lo más cerca posible del alimentador a la intemperie.

3.3.1. Cadena de recepción

Para la cadena de recepción cuenta con un empaquetado de un amplificador de bajo ruido de la compañía *Noeelec* que contiene además un filtro pasabanda de 75 MHz de ancho de banda centrado en 1420 MHz. El amplificador tiene una ganancia típica a 1.4 GHz de 35 dB con una figura de ruido de 0.6 dB para la misma frecuencia. Además, este amplificador puede ser alimentado por bias-tee⁵ desde la misma SDR.

 $^{^5}$ Circuitos de inyección de corriente continua a travez de líneas coaxiales de RF

Figura 3.17: Amplificador y filtro pasabanda SAW
bird HI de la compañía $\it Noeelec.$

En la figura 3.17 se puede ver el amplificador y filtro pasabanda SAWbird HI de la compañía conectado a un analizador de espectro y una fuente de ruido para la caracterización de la cadena de recepción.

3.3.2. Digitalizador y adquisición

El digitalizador es una SDR de la organización RTL-SDR basado en el chip R820T de Rafael Micro que se conecta por USB a un computador para obtener directamente el voltaje complejo de la IF para que sea procesada por el software de adquisición. Este digitalizador tiene una frecuencia de muestreo máxima de 3.2 MS/s y una resolución de 8 bits, pero usualmente se utiliza bajo los 2.56 MS/s para que tenga un comportamiento estable [17].

Figura 3.18: RTL-SDR conectada a la cadena de amplificador y una Raspberry PI 4B.

En la figura 3.18 se puede ver la RTL-SDR conectada a la cadena de amplificador y una Raspberry PI 4B con un *Hat* POE. Se utilizó esta configuración para llevar solo un cable ethernet cat 6 por el cual pasaría la energía y los datos. La Raspberry Pi es capaz de alimentar a la SDR que a su vez por medio de su Bias-Tee puede alimentar al amplificador de bajo ruido con la mínima cantidad posible de cables y conexiones.

El cable ethernet utilizado es un cat 6 de 25 metros, que va desde el receptor al rack de control. Este cable es del tipo $FFTP^6$, lo que quiere decir que cada par trenzado está recubierto con una lámina de aluminio y a su vez los 4 pares trenzados más un conductor de apantallamiento están recubiertos por otra lámina de aluminio que se conecta a tierra en ambos extremos para minimizar el ruido al transportar datos y no producir RFI al telescopio.

3.4. Software de control y adquisición

La infraestructura digital del telescopio se diseñó con un factor principal en mente, que este se pueda operar completamente remoto, por lo que todo el software está hecho para ser operado desde cualquier lugar con acceso a internet. Accediendo a la terminal de control por medio de SSH⁷ y todos sus sistemas están conectados a una red local por medio de ethernet.

El principal lenguaje de programación utilizado para el desarrollo de software fue python, por su simplicidad a la hora de generar entornos virtuales de desarrollo y librerías existentes para utilizar los diversos subsistemas, como por ejemplo, el uso de la librería de *astropy* para los cálculos de seguimiento.

⁶ Cable de par trenzado apantallado con pantalla global (FFTP)

⁷ SSH del inglés Secure Shell, es un protocolo de envío de comandos a un computador de forma segura.

3.4.1. Control de la montura

El controlador del rotor requiere una comunicación específica en hexagesimal para moverse y a través del mismo protocolo responde con la posición en la cual se encuentra. Para esto se creó una librería en python basada en el protocolo Rot2Prog [18] que empaqueta y traduce los comandos de movimiento, elevación y azimuth. Esta librería es un archivo de python por el nombre de spid.py, la que es importada para todos los demás códigos de control.

control.py

Es el código principal de control, tiene la capacidad de mandar una posición de azimuth y elevación, de pedir la posición actual de la montura, de reiniciar el controlador en caso de que no responda a los comandos y una de las funciones más importantes es el parado de emergencia de cualquier movimiento.

cpt_traking_software.py

Este es un software más sofisticado que se creó para el seguimiento de cuerpos celestes. A partir de las coordenadas de declinación y ascensión recta, el software calcula la posición de la montura para este astro según la ubicación del telescopio y la hora local.

Figura 3.19: cpt_traking_software.py en funcionamiento.

En la figura 3.19 se puede ver el software en funcionamiento, con las opciones de cambiar el objeto a seguir *change*, el seguimiento del objeto *follow* y el parado del movimiento *stop*. El software es capaz de invertir la posición de elevación del telescopio para minimizar el movimiento en azimut y evitar que los cables puedan enrollarse entre sí.

Por ejemplo, si al calcular que la posición del astro en elevación de 50 grados y azimuth de 315, requiere un movimiento de más de 180 grados en azimut, el software invierte la posición de elevación para que el movimiento sea menor a 180 grados resultando en que el telescopio apunte a 130 grados de elevación y a 135 grados en azimut. De forma automática, si el astro tiene una elevación menor a los 30 grados, o mayor a 150 grados en la inversión, este deja de

seguir el astro ya que a esta elevación la interferencia de radio es muy notoria.

3.4.2. Adquisición de datos

Para la adquisición de datos se crearon 2 softwares en python para esta tarea, uno para adquirir una acumulación de espectros para las observaciones de un objeto celeste y otro para la calibración del instrumento.

rtl_spectra.py

Es un script que utiliza la radio RTL-SDR para obtener espectros mediante un comando específico, este se utiliza principalmente para las caracterizaciones y las mediciones. Se usa en conjunto con el software de control para crear las variantes de medición de patrón de radiación. Se puede configurar la tasa de datos, el tamaño de la FFT, la cantidad de espectros tomados y el formato de guardado.

cpt_rtl_adquisition.py

Es el software de observación, el cual tiene un *ring-buffer* o un acumulador de espectros flotantes, esto quiere decir que, según como se configure, puede acumular una cantidad de espectros que se van actualizando constantemente con nuevos espectros y eliminando los viejos en la ventana de tiempo que se requiera o en lo que la memoria pueda guardar.

Al igual que el script anterior este se puede configurar para la tasa de datos, el tamaño de la FFT, la cantidad de espectros tomados y el formato de guardado. Este, por otra parte, está diseñado para obtener una gran cantidad de espectros para ser guardados en una estructura eficiente en espacio en código binario. También tiene la tarea de mostrar en tiempo real la acumulación promediada de los espectros y en paralelo obtener las muestras y agregarlas al ring-buffer.

3.5. Infraestructura de caracterización

Para caracterizar el telescopio, se requiere una serie de instrumentos y elementos que permitan obtener los datos necesarios para su calibración y la verificación de los resultados.

3.5.1. Fuente de calibración

El campo lejano de las antenas eléctricamente grandes, como es el caso de una antena de apertura, aumenta conforme crece la apertura fisica de esta. Para medir el patrón de radiación en potencia de una antena se requiere de una fuente de radiofrecuencia conocida a una distancia mayor a la de campo lejano de la antena que se quiere medir.

Para esto se instaló una antena de alto ancho de banda (192 MHz a 8 GHz) en la copa de agua del cerro Calán, con un cable coaxial de 20 metros de longitud. Al dejar la antena instalada en la parte superior y pudiéndose instalar generadores de señales desde la parte

inferior. A esta antena le llamamos la "estrella artificial".

Figura 3.20: Parametro S11 para la antena utilizada en la fuente de calibración.

El ancho de banda de esta antena tiene dos criterios de zona óptima de operación, como se puede apreciar en la figura 3.20, el primer criterio es que la antena posee un ancho de banda bajo los -6 dB de reflexiones para el rango de 192 MHz a 1 GHz y luego para el otro criterio de -10 dB de reflexiones para el rango de 1 GHz a 3 GHz.

(a) Antena de polarización circular de alto ancho (b) Antena de la estrella artificial instalada en la de banda con su soporte para la copa de agua. copa de agua.

La antena de la estrella artificial se encuentra a una altura de 15 metros sobre el suelo y a 186 metros de la antena del telescopio. La antena de la estrella artificial es una antena de polarización circular de alto ancho de banda con una ganancia de 3 dBi aproximadamente.

La línea de vista de la antena se encuentra totalmente despejada, manteniendo la primera zona de Fresnel libre de obstáculos para las frecuencias de interés.

Como generador de señales se utilizó un generador Valon 5008 con una salida de 2.23 dBm a 1428 MHz y a 400 MHz. Además, se le instaló un filtro pasabajo para minimizar la

Figura 3.22: Generador de señales Valon 5008 con filtro pasabajo con una batería externa.

El generador de la figura 3.22 se conecta a la antena de la estrella artificial por medio de un cable coaxial de 20 metros de longitud y se alimenta por una batería externa de 5 V. Se programa previamente la frecuencia a la que se requiera para las mediciones.

3.5.2. Fuente de ruido

Para realizar la medición de la temperatura de ruido se requirió de una fuente de ruido. Para obtener la temperatura de la cadena de recepción se utilizó una fuente de ruido Agilent 346B con una alimentación de 28 V.

Figura 3.23: Fuente de ruido Agilent 346B.

3.5.3. Software de caracterización

cpt_rp_measure.py

Es un software que al igual que los de la sección 3.4 obtiene espectros y los guarda para el análisis futuro. La diferencia es que este software está diseñado para la calibración del instrumento, por lo que además este instrumento guarda los espectros tomados por ángulo con respecto a la estrella artificial de la copa de agua para las mediciones de patrón de radiación.

Este script genera un archivo con los espectros tomados por ángulo y luego mueve la montura a otro ángulo para tomar otro espectro, este proceso se repite hasta que se obtienen un corte de 180 grados con la cantidad de espectros que haya sido configurada.

Como la fuente de calibración se encuentra en altura, hay que ajustar el plano de rotación con respecto a plano azimutal de la montura, para esto se utilizó la siguiente conversión de coordenadas:

$$\theta' = \theta + \left(1 - \frac{2\phi}{\pi}\right)E,\tag{3.1}$$

$$\phi' = \phi. \tag{3.2}$$

Donde θ es la elevación original, E es el ángulo de elevación de la estrella artificial con respecto a la antena, ϕ es el azimut, $\theta' \neq \phi'$ son las nuevas coordenadas. Con esta conversión se tiene una elevación específica para cada punto de azimut que permite mantener el plano de rotación de la fuente de calibración en el nuevo plano de azimutal.

cpt_siglent.py

Es un software que utiliza de manera remota el instrumento Siglent SVA1075X para obtener sus espectros y realizar las mismas mediciones de patrón de radiación que el software anterior.

Capítulo 4

Caracterización y puesta en servicio

En este capítulo se expondrán los procesos de caracterización y puesta en servicio del telescopio CPT. Para abordar los puntos de caracterización y primera luz de los objetivos propuestos para este trabajo, se detallarán los aspectos considerados para cada una de las mediciones y los fundamentos correspondientes.

4.1. Enfoque del alimentador

Se realizaron 2 mediciones de enfoque del alimentador, una a 70 m y otra a 186 m. Para la primera medición se utilizó un generador de señales genérico con una LPDA de alto ancho de banda. Luego para el resto de las mediciones se utilizó la estrella artificial de la copa de agua de la sección 3.5.1.

4.1.1. Pruebas de enfoque preliminar

En un principio el alimentador del telescopio consistía en una antena LPDA (Log Periodic Dipole Array) de 296 MHz a 6 GHz, de ultra ancho de banda, con una ganancia de aproximadamente 9 dBi. Con el receptor instalado en esta antena, se procedió a realizar el enfoque del alimentador. Para esta etapa se retiró el soporte tetrápodo y se instaló el alimentador en un trípode auxiliar sostenido por un tubo de PVC para lograr la altura del centro del reflector de 2 m.

Figura 4.1: Antena LPDA en trípode auxiliar a 2 metros de altura.

Con la antena de la figura 4.1 se procedió a realizar el enfoque del alimentador. La medición consistió en mover el alimentador en el eje Z, es decir, en la dirección de la apertura del reflector. A una distancia de 70 metros desde el reflector se instaló sobre otro trípode un generador de señales portátil con otra LPDA de menor ancho de banda.

(a) Generador de señales portátil con la antena (b) Antena LPDA de menor ancho de banda insorientada hacia el reflector. talada con el generador de señales en trípode.

El generador de señales se configuró a una frecuencia de 1000 MHz y se transmitió constantemente el tono en dicha frecuencia. Se instaló con la consideración de un campo lejano de 60.5 metros a 1000 MHz para el tamaño del reflector, por lo que este generador se encontraba a dicha región.

Figura 4.3: Distancia de 70 metros entre el reflector y el generador de señales con elevaciones similares.

En la figura 4.3 se muestra la distancia aproximada de 70 metros, tomando 10 metros de distancia adicional para asegurar el campo lejano a dicha frecuencia. Se alineó visualmente la antena del generador con el reflector a la distancia, con una línea de vista que se encontraba parcialmente obstaculizada por árboles y arbustos.

Para efectos de la medición, como se necesitaba encontrar un punto aproximado de enfoque, la exactitud de esta medición no fue crítica. Se procedió a mover el alimentador en el eje Z, es decir en la dirección de la apertura del reflector, hasta encontrar el punto donde la señal del generador era máxima.

La potencia recibida por el receptor fue medida con el software de medición utilizando la RTL-SDR guardando los espectros para distancias de 5 cm en 5 cm. Se midió la razón señal a ruido y se obtuvo el punto de máxima potencia recibida en dBFS. Medidas que luego fueron calibradas en dBm por la medición de sensibilidad.

4.1.2. Pruebas de enfoque definitivas

Para la medición de enfoque con la estrella artificial se instaló el soporte tetrápodo y se colocó el alimentador en su posición final después de las mediciones anteriores. Se configuró el generador de señales Valon de la estrella artificial a frecuencias autorizadas para transmisión de radioaficionados. Se utilizó esta nueva frecuencia para evitar interferencia de radiofrecuencia en la medición, utilizando el filtro delgado de HI.

Figura 4.4: Distancia de 188 metros entre el reflector y la estrella artificial de la copa de agua.

Para el caso de 1428 MHz, la distancia de campo lejano era de 85 metros y la estrella artificial de la figura 4.4 se encontraba a 188 metros, estando perfectamente en el campo lejano del reflector. Además, la alineación con el reflector se realizó con el control automático de la montura alt azimutal y la línea de vista se encontraba completamente libre para la primera zona de Fresnel.

Figura 4.5: Alimentador dipolo de ARTE con tetrápodo instalado a la distancia focal de la párabola a 135 cm.

En la figura 4.5 se muestra el alimentador con el tetrápodo instalado y un tubo PVC milimetrado para medir la distancia relativa al reflector, usando de referencia el punto donde los soportes se unen al tubo del alimentador.

Para esta medición de enfoque, se movió el alimentador en el eje Z con una resolución de 0.5 cm hasta encontrar el punto de máxima potencia recibida que se puede apreciar en la

sección 5.1. Se midió la razón señal a ruido y se obtuvo el punto de máxima potencia recibida en $dBFS^8$ al igual que en la medición anterior.

4.2. Medición del patrón de radiación

Se utilizaron 2 plataformas para la medición del patrón de radiación, una con la medida relativa dBFS obtenida de los espectros de la RTL-SDR y otra con la medida absoluta en dBm obtenida con el analizador de espectros Siglent SVA1075x. Para todas las mediciones se utilizó la estrella artificial de la copa de agua.

Todas las mediciones de patrón de radiación se realizaron en la cima del cerro Calán, en la plataforma de observación del telescopio CPT. Para cada frecuencia medida, se hicieron los cortes azimutales y de elevación, o la medida del campo H y el campo E. Todos los cortes son de 180 grados para obtener con claridad los lóbulos laterales y con una resolución de 1 punto por grado.

4.2.1. Medición relativa para banda de HI

La medición con la RTL-SDR se realizó a 1428 MHz, utilizando el filtro angosto de la misma frecuencia de *RadioastronomySuplies*. El generador Valon, se configuró a 1428 MHz con una potencia inyectada a la estrella artificial de 0.23 dBm.

Las pérdidas ohmnicas del cable coaxial RG316 a 1428 MHz son de 10.5 dB por 10 m, como el cable que alimenta la antena de la copa de agua es de 20 metros, se obtuvo una pérdida de 21 dB. La potencia recibida por la antena es de -21 dBm aproximadamente.

Con los softwares de medición se obtuvieron los espectros de la señal recibida por la RTL-SDR, se midió la razón señal a ruido y se guardaron 1000 espectros para cada grado de elevación y azimuth. Como la copa de agua se encuentra en altura, se generó un plano semicircular elevado en 7 grados sobre el eje horizontal, donde se corrigieron los valores de elevación por ángulo azimutal con la ecuación de corrección 2.7. Para el segundo corte, se generó un desfase de 7 grados en elevación, y para medir de 0 a -90 grados, se invirtió la posición azimutal en 180 grados para obtener ese cuadrante.

4.3. Sensibilidad

La medida de sensibilidad se realizó inyectando un tono para cada frecuencia de interés en la entrada de la cadena de recepción. Se utilizó el generador de señales *Rode & Schwartz* SMB100A con una potencia de salida de -80 dBm y un coaxial RG316 de 10 metros al receptor instalado en el foco de la antena. Se midieron los espectros generados por la RTL-SDR para determinar la escala dBFS de la radio y calibrar los demás espectros en potencia.

 $^{^{8}\,}$ dBFS, Medida en decibeles *Full Scale* relativas a las escalas de voltajes de la ventana de digitalización de un digitalizador.

Se guardaron los espectros de 300 MHz, 400 MHz y 500 MHz para cubrir la banda de interés del proyecto CHARTS. También se guardaron los espectros de 1000 MHz, 1428 MHz, 1500 MHz y el límite de digitalización de 1700 MHz.

4.4. Medición de la temperatura de ruido

Para medir la temperatura de ruido del receptor, se utilizó la fuente de ruido Agilent 346B con una amplificación de 40dB. Para la cadena de amplificación se utilizó el LNA + Filtro H1 SAWbird+ H1 de Nooelec, el cual se conectó a la fuente de ruido y se midió la potencia de ruido en la salida en el analizador de espectro.

Para la temperatura de ruido del receptor, se inyectó la señal de ruido en la entrada del receptor y se midió la potencia de ruido con los espectros de la RTL-SDR en la banda de interés.

Se realizó el cálculo de temperatura de ruido con el método de Y-factor y se obtuvo la figura de ruido de la cadena de amplificación, del receptor y del sistema.

4.5. Medición del error de apuntamiento

Para determinar el error de apuntamiento del telescopio se utilizó la estrella artificial de la copa de agua. Se especificaron las posiciones geograficas del telescopio y la copa de agua, así tambien sus alturas correspondientes.

Se midieron las posiciones utilizando un GPS y se determino la distancia entre el telescopio y la copa de agua. También se midió la altitud de las bases de cada estructura con GPS. Las coordenadas del telescopio son -33.395701 -70.536878, latitud y logitud respectivamente con una altitud de 867 metros sobre el nivel del mar. Para la copa de agua las coordenadas son -33.397340 y -70.536800, latitud y logitud respectivamente, con una altituid de 853 metros sobre el nivel del mar.

El centro de rotación del motor de la antena, se encuentra a 2 metros de la superficie del terreno y la altura de la antena instalada en la copa de agua es 15 metros desde el terreno.

Con estos datos se obtuvo la posición de la copa de agua con respecto al telescopio en terminos de elevación y azimuth. Luego se calculó la diferencia de posición comandada al telescopio para encontrar el máximo de potencia recibida con la posición real de la estrella artifical.

4.6. Primera luz

Para la primera luz, se escogió la región estándar S9 del catálogo de observaciones en la banda de 21 cm. Es una de las 4 regiones de emisión de hidrógeno neutro recomendada para calibración de instrumentos y definición de escalas de temperatura para los catálogos de H1.

Estás regiones se estudiaron por el observatorio Hat Creek con un telescopio de 25 metros de apertura. Los espectros de estas regiones se encuentran calibrados a temperatura.

La región S9 tiene una ascensión recta de 17 h 52 m 05 s y una declinación $-34^{\circ}25'15"$, coordenadas que son ingresadas en el software de control de la montura alt azimutal.

La prueba consistio en relizar observaciones de 30 minutos, acumulando 10 espectros por segundo y obteniendo su promedio. Estas acumulaciones tuvieron lugar en una ventana de 2 horas entre las 12:30 pm UTC -3:00 y las 4:00 pm UTC -3:00, con unos cuantos minutos entre cada medición para corroborar integridad de los datos. Entre estas mediciones de 30 minutos se acumularon espectros del cielo a 30 grados de elevación fuera de la zona para obtener el espectro de la radiación de la atmosfera y poder ajustar la medición.

Para la observación se configuró el telescopio con el receptor de HI y con la antena dipolo exótico en el foco geométrico del reflector. Se obtuvieron los espectros de la RTL-SDR y se guardaron en el disco duro para su posterior análisis.

Capítulo 5 Análisis de Resultados

La construcción de la antena finalizó con todas las partes mecánicas y electrónicas ensambladas. A continuación se presentan los resultados obtenidos en la caracterización de la antena.

Figura 5.1: Antena construida siendo monitoreada por la cámara remota

5.1. Posicion del alimentador

La posición del alimentador con mayor ganancia se obtuvo a 135 cm de la superficie del reflector. La figura 5.2 muestra la ganancia en función de la distancia del alimentador al reflector.

Figura 5.2: Potencia recibida en función de la distancia del alimentador al reflector

La distancia obtenida coincide con la distancia focal de la antena y se observa que la a medida que el alimentador se aleja del foco, aumentando o disminuyendo la distancia con la parábola, la ganancia disminuye drásticamente perdiendo 6 dB por centímetro hasta llegar a la ganancia que tendría la antena sin considerar el reflector.

Estas pérdidas son análogas a la medida de 1420 MHz para la de 400 MHz.

5.2. Patrón de radiación

A continuación, se presentan los patrones de radiación obtenidos para la antena a 1428 MHz y 400 MHz. Para la banda de 1428 MHz se realizaron los 2 cortes de elevación y azimuth ya que este se obtuvo utilizando el digitalizador del receptor, lo que permite hacer las maniobras de elevación completas. En cambio, para 400 MHz, se debía utilizar un cable coaxial hacia el analizador de espectro.

En la figura 5.3.a se observa el corte azimutal del patrón de radiación a 1428 MHz, donde se aprecia un lóbulo principal predominante de 4.4 grados de HPBW y todos los demás lóbulos laterales bajo -20 dB.

Con respecto al corte de elevación, de la figura 5.3.b, se observa un lóbulo principal de 4.3 grados de HPBW y una discontinuidad en el lóbulo principal a 0 grados. Los lobulos laterales se encuentran por debajo de -25 dB.

En la figura 5.4.a se observa el corte azimutal del patrón de radiación a 400 MHz, donde se aprecia un lóbulo principal predominante de 7.5 grados de HPBW y todos los demás lóbulos laterales bajo -15 dB.

(a) Corte campo H del patrón de radiación a 1428 (b) Corte campo E del patrón de radiación a 1428 MHz MHz

(a) Corte campo H del patrón de radiación a 400 (b) Corte campo E del patrón de radiación a 400 MHz MHz

Con respecto al corte de elevación, de la figura 5.4.b, se observa un lóbulo principal de 7.5 grados de HPBW y una discontinuidad en el lóbulo principal a 0 grados. A diferencia de la figura 5.4.a los lóbulos laterales están dominados por ruido, sin embargo, sigue por debajo de los -15 dB

5.3. Sensibilidad

La radio definida por software, entrega una escala relativa de potencia o dBFS, por lo que se calibró la escala de potencia con la ayuda de un generador de señales.

Figura 5.5: Espectro obtenido por la RTL-SDR a 1428 GHz calibrado a potencia

Como se puede apreciar en la figura 5.5, para la frecuencia específica de 1428 MHz, se calibró la escala para obtener los mismos -80 dBm que fueron inyectados, siendo la corrección obtenida de -40.7 dB.

Se repitió la medición de potencia en las demás frecuencias de interés, obteniendo los espectros de la figura 5.6 y las sigueientes correcciones de potencia para cada caso de la tabla 5.1.

Frecuencia (MHz)	Corrección (dB)	Pérdidas de cable (dB)
300	-73.2	4.45
400	-70.63	5.2
500	-68.65	5.9
1000	-49.43	8.45
1500	-39.42	10.5
1700	-36.81	11.5

Tabla 5.1: Corrección de potencia para las frecuencias de interés

Figura 5.6: Tono de -80 dBm a las frecuencias de interés

5.4. Ganancia y Directividad

Al considerar una apertura de 3 metros de diámetro, se calculó la directividad a partir de definición teórica para la banda de 1428 MHz.

$$D = \frac{4\pi A}{\lambda^2} = 2033.7 \tag{5.1}$$

También se calculó la directividad a partir de los haces de media potencia obtenidos en la sección 5.2, utilizando la aproximación de apertura circular uniforme para un reflector parabólico.

$$D = \frac{38,933}{\text{HPBW}_{\text{E}} \cdot \text{HPBW}_{\text{H}}} = 2057.7 \tag{5.2}$$

Lo que se condice con el valor teórico con un error aproximado de un 1%.

Luego utilizando las mediciones de potencia en la banda de 1428 MHz, una vez calibradas con la escala obtenida con la RTL-SDR en la figura 5.5, se obtuvo una ganancia del sistema a partir de la ecuación de Friis (2.1.7) con la estrella artificial.

La potencia inyectada a la antena de 3 dBi de la copa de agua fue de 2.23 dBm, el cable de 20 metros de longitud y el cable de 2 metros tiene una atenuación de 20.4 dB y 2.2 dB respectivamente a la frecuencia de 1428 MHz, las pérdidas de espacio libre son de 81.01 dB y la potencia medida en el receptor fue -67.22 dBm.

$$P_{\rm rx}({\rm dBm}) = P_{\rm tx}({\rm dBm}) + G_{\rm tx}({\rm dB}) + G_{\rm rx}({\rm dB}) - 20\log R(km) - 20\log f({\rm MHz}) - L_{\Omega}({\rm dB})$$
(5.3)

$$G_{rx} = -67.22 - 2.23 - 3 + 81.01 + 20.4 + 2.2 = 31.16(dB)$$
(5.4)

Con lo que se obtiene una ganancia de 31.16 dB para la banda de 1428 MHz. Por consecuencia se puede determinar la eficiencia de apertura considerando la directividad obtenida a partir del patrón de radiación de D = 2057.7.

$$\varepsilon_A = \frac{G}{D} = \frac{1304.1}{2057.7} = 0.634 \tag{5.5}$$

$$\varepsilon_A = 0.634 \tag{5.6}$$

Este valor de eficiencia de apertura en comparación con la eficiencia de apertura declarada por el fabricante es un poco menor, siendo la del fabricante de 0.65 para el rango de frecuencias entre 1.2 a 4 GHz.

5.5. Compensación de apuntamiento

El máximo de potencia recibida se obtuvo al comandar una posición de 7 grados de elevación con 171 grados de azimuth. La posición determinada de la fuente con respecto a la ubicación del telescopio es 4.6 grados de elevación y 6 grados de azimuth.

La diferencia entre la posición de la fuente y la posición de la antena es de 2.4 grados en elevación y 3 grados en azimuth. Así el error de apuntamiento es de +2.4 grados y +3 grados de elevación y azimuth respectivamente.

5.6. Primera luz

Figura 5.7: Espectro obtenido por la RTL-SDR a 1420 MHz calibrado a potencia

Figura 5.8: Espectro de la región estandar S9 de calibración [19]

En el spectro de la figura 5.7 se observa la curva de H1 obtenida en la región estandar S9. Se aprecia una detección de la señal de HI con 1100 sigmas. También se pueden distinguir picos en 1418.3 MHz, 1419 MHz, 1419.6 MHz y 1421.6 MHz que podrían significar interferencia de radiofrecuencia, armonicos de línea o artefactos del digitalizador, sin embargo, se requiere un analizis más profundo para determinar su procedencia.

En comparación con el espectro de la región estandar S9 de calibración en la figura 5.8, se observa una similitud en la forma de la curva y conserva el ancho de velocidad de la detección, de aproximadamente 70 km/s. Se puede explicar la diferencia de ancho de detección por la diferencia de apertura, ya que los datos obtenidos de la región estandar, fueron tomados por un radiotelescopio de 25 m de diametro.

Capítulo 6 Conclusiones

Se comisionó un nuevo radiotelescopio con tecnologías accesibles y de bajo costo, como las radios definidas por software (SDR). Se pudo desarrollar un sistema de 16348 canales espectrales a una frecuencia de muestreo de 2.048 MS/s donde se obtuvieron parámetros operacionales que se condicen con la teoría para estas condiciones, ganancia de 31.5 dBi para 1 GHz y un piso de ruido de 135 dBm sin utilizar criogenia.

Este telescopio cuenta con un rotor motorizado de control remoto con una montura alt azimutal, permitiendo una cobertura completa de la esfera celeste disponible en su ubicación. Se logró una eficiencia de 63% a 1.42 GHz sin herramientas de construcción sofisticadas ni el uso de materiales costosos para la superficie del reflector parabólico.

La detección de la zona de calibración S9 de hidrógeno neutro, significa una puesta en servicio exitosa, pudiendo detectar fuentes astronómicas con una estimación de 100 σ aproximadamente para su primera luz, haciendo uso del software de operación remota a través de internet.

Se logró la caracterización del patrón de radiación para la frecuencia de interes de CHARTS, obteniendo un HPBW de 7.5 grados centrado a 400 MHz, que a su vez corrobora su capacidad de reconfiguración para otras bandas de observación.

Finalmente, el telescopio CPT se convierte en un nuevo recurso clave para nuevas colaboraciones internacionales, destacando el proyecto CHARTS, que busca estudiar las ráfagas rápidas de radio (FRB) y otros fenómenos astrofísicos. En este contexto, se recomienda continuar con la optimización del receptor y su alimentador, para ampliar su rango de frecuencias de operación y fortalecer la infraestructura digital para adquirir mejores observaciones y estudios más complejos.

6.1. Trabajos Futuros

Para los trabajos futuros se recomienda la integración de un receptor a base de FPGA, como una RFSoC, para mejorar la capacidad de procesamiento de señales y la adquisición de datos. Esto permitirá la implementación de técnicas de interferometría y la detección de señales de radio más débiles.

Se debe continuar con el desarrollo de un mejor alimentador, que cubra un mayor ancho de banda, con técnicas de diseño de antenas más avanzadas, para mejorar el desempeño de radiofrecuencia y la disminución de los tiempos de mantenimiento para cambiar de banda de observación de interés.

Finalmente, se recomienda la integración de soluciones para mejorar la robustez del sistema y la capacidad de operación en condiciones climáticas adversas, como la instalación de un sistema de enfriamiento activo para la cadena de recepción y métodos de calibración automatizados.

Bibliografía

- Condon, J. y Ransom, S., Essential Radio Astronomy. Princeton Series in Modern Observational Astronomy, Princeton University Press, 2016, https://books.google.cl/bo oks?id=vWWYDwAAQBAJ.
- [2] Stutzman, W. y Thiele, G., Antenna Theory and Design. Antenna Theory and Design, Wiley, 2012, https://books.google.cl/books?id=xhZRA1K57wIC.
- [3] Friis, H., "A note on a simple transmission formula", Proceedings of the IRE, vol. 34, no. 5, pp. 254–256, 1946, doi:10.1109/JRPROC.1946.234568.
- [4] Coleman, D. D. y Westcott, D. A., CWNA: Certified Wireless Network Administrator Official Study Guide. Hoboken, NJ: John Wiley & Sons, 2012.
- [5] (ALMA), A. L. M. A., "About alma". https://www.almaobservatory.org/en/aboutalma/, 2025.
- [6] Finger, R. A., Design and construction of a digital sideband separating spectrometer for the 1.2-meter southern radio telescope. Tesis PhD, 2013.
- [7] Teunissen, P. J. G. y Montenbruck, O., Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing, 2017.
- [8] Heideman, M., Johnson, D., y Burrus, C., "Gauss and the history of the fast fourier transform", IEEE ASSP Magazine, 1984, doi:10.1109/MASSP.1984.1162257.
- [9] National Radio Astronomy Observatory (NRAO), "Radio telescopes national radio astronomy observatory", 2024, https://public.nrao.edu/telescopes/radio-telescopes/.
- [10] Oscar Restrepo Gaitán, "Desarrollo de tecnologías y metodologías para mejorar la observación de la línea de 21 cm del hidrógeno neutro", 2023, https://repositorio.uchile.c l/handle/2250/198618.
- [11] Departamento de Astronomía, Universidad de Chile, "Astronomical radio transients experiment (arte)"., http://www.das.uchile.cl/lab_mwl/project.html.
- [12] RF Hamdesign, "3 meter parabolic dish kit", 2024, https://www.rfhamdesign.com/pr oducts/parabolicdishkit/3meterdishkit/index.php.
- [13] Alvarado, P. A., "Medición del patrón de radiación del telescopio mini", 2014, https://repositorio.uchile.cl/handle/2250/116317.
- [14] Analog Devices, "Noise figure measurement methods and formulas maxim integrated", 2024, https://www.analog.com/en/resources/technical-articles/noise-figure-measureme nt-methods-and-formulas--maxim-integrated.html.
- [15] SPID, "Big-ras/hr azimuth & elevation rotor"., https://www.rfhamdesign.com/produc ts/spid-hr-antenna-rotators/bigrashr/index.php.

- [16] Gallardo, D., "Diseño y medición de un arreglo de antenas para la detección de frbs galácticos", octubre 2023. Reporte EL7850.
- [17] RTL-SDR Blog, "Cheap and easy hydrogen line radio astronomy with an rtl-sdr, wifi, parabolic grid dish, lna and sdrsharp". RTL-SDR Blog, 2018, https://www.rtl-sdr.com/cheap-and-easy-hydrogen-line-radio-astronomy-with-a-rtl-sdr-wifi-parabolic-grid-dish-lna-and-sdrsharp/. Online.
- [18] Ryeng, E., "Replacing and automating the wordpress cron system", 2025, https://ryen g.name/blog/3. Accessed: 2025-01-02.
- [19] Williams, D., "Studies of four regions for use as standards in 21 cm observations", aaps, 1973, https://ui.adsabs.harvard.edu/abs/1973A&AS....8..505W.

Anexos

Anexo A. Python scripts

A.1. cpt_tracking_software.py

Este codigo permite el seguimiento de un objeto en el cielo, utilizando coordenadas altazimutales. El programa se ejecuta en un hilo separado y actualiza la posición del telescopio cada 5 segundos. El usuario puede ingresar comandos para iniciar o detener el seguimiento, cambiar el objetivo o salir del programa.

```
import time
1
     import threading
2
     from astropy.coordinates import EarthLocation, AltAz, SkyCoord
3
     from astropy.time import Time
4
     import spid
5
     import socket
6
     from astropy import units as u
7
8
     # Define your telescope's location
9
     latitude = -33.395720 # Replace with your latitude in degrees
10
     longitude = -70.536856 # Replace with your longitude in degrees
11
     elevation = 868 # Replace with your elevation in meters
12
13
     # Telescope limits (adjust based on your telescope's safety and design)
14
     ALT_MIN = 20 # Minimum Altitude in degrees (avoid negative or below horizon)
15
     ALT_MAX = 150 # Maximum Altitude in degrees
16
     AZ_MIN = 0 # Minimum Azimuth in degrees
17
     AZ_MAX = 261 # Maximum Azimuth in degrees
18
19
     # Global variables for tracking and target
20
     tracking = False
21
     current_target = None
22
     stop\_threads = False
23
24
     def send_angle(alt, az, host='10.17.89.223', port = 23):
25
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as client_socket:
26
           client_socket.connect((host, port))
27
           message = spid.encode_command(spid.build_command(round(float(az),1), round(
28
      \hookrightarrow float(alt))))
           client_socket.sendall(message)
29
30
31
```

```
def get_altz_coords(ra, dec):
32
         radec = SkyCoord(ra=ra*u.hour, dec=dec*u.deg, frame='icrs')
33
         # Calan GEOGRAPHIC_COORD
34
         calan_obs = EarthLocation(lat=-33.3961*u.deg, lon=-70.537*u.deg, height=867*u.m)
35
         now = Time.now()
36
         altaz_frame = AltAz(obstime=now,location=calan_obs)
37
         altaz = radec.transform_to(altaz_frame)
38
         alt = altaz.alt.deg
39
         az = altaz.az.deg
40
41
        if az>200:
42
            az = 360 -az
43
            alt = 180 - alt
44
        return alt, az
45
46
47
     def is_within_limits(alt, az):
48
         ""Check if the Alt/Az coordinates are within the telescope's limits.""
49
         return ALT_MIN <= alt <= ALT_MAX and AZ_MIN <= az <= AZ_MAX
50
51
52
     def track_target():
53
         ""Background thread function to update tracking and send data via socket.""
54
         global stop_threads
55
56
         while not stop_threads:
57
            if tracking and current_target:
58
               ra, dec = current_target["ra"], current_target["dec"]
59
               alt, az = get_altz_coords(ra, dec)
60
61
               if is_within_limits(alt, az):
62
                  print(f"Tracking {current_target['name']}: Altitude = {alt:.2f}°, Azimuth = {
63
       \hookrightarrow az:.2f}°")
                  data = f"{current_target['name']}: Altitude = {alt:.2f}, Azimuth = {az:.2f}\n
64
       \rightarrow 
                  try:
65
                     send_angle(alt, az)
66
                  except:
67
                     print("The controller is not responding")
68
               else:
69
                  print(f"{current_target['name']} is outside the telescope limits: Alt = {alt:.2f}
70
      \hookrightarrow °, Az = {az:.2f}°")
            time.sleep(5) # Update every 5 seconds
71
72
73
74
     def main():
75
         global tracking, current_target, stop_threads
76
77
         print("Welcome to the telescope tracking program!")
78
         print("Commands: follow, stop, change, exit")
79
80
```

```
# Start the tracking thread
81
         tracking_thread = threading.Thread(target=track_target, daemon=True)
82
         tracking_thread.start()
83
84
         while True:
85
            command = input("\nEnter command (follow, stop, change, exit): ").strip().lower()
86
87
            if command == "follow":
88
                if current_target:
89
                   tracking = True
90
                   print(f"Started following {current_target['name']}...")
91
                else:
92
                   print("No target selected. Use 'change' to select a target.")
93
94
             elif command == "stop":
95
                tracking = False
96
                print("Tracking stopped.")
97
98
             elif command == "change":
99
                name = input("Enter the name of the object: ").strip()
100
                ra = float(input("Enter the Right Ascension (RA) in degrees: "))
101
                dec = float(input("Enter the Declination (Dec) in degrees: "))
102
103
                current_target = {"name": name, "ra": ra, "dec": dec}
104
                print(f"Target changed to {name} (RA: {ra}, Dec: {dec}).")
105
106
             elif command == "exit":
107
                print("Exiting the program. Goodbye!")
108
                stop\_threads = True
109
                tracking_thread.join()
110
                socket_thread.join()
111
                break
112
113
             else:
114
                print("Invalid command. Please try again.")
115
116
117
                     == " main ":
      if name
118
         main()
119
```

A.2. spid.py

Este script funciona como libreria para codificar y decodificar comandos para el protocolo SPID MD-1 Rot2Prog. Permite convertir ángulos a pulsos, construir comandos de movimiento al stream del socket UDP y decodificar respuestas del controlador.

```
command str = "5730303030PH30303030PV2F20"
6
     restart_str = "57EFBEADDE00000000000EE20"
7
8
     def angle_to_pulse(angle):
q
        i = str(int(deg_res * (360 + angle))) # create string of pulses
10
        if len(i) < 4: # Add the "0" for complet the byte string
11
           i = "0" + i
12
        return i
13
14
     def build command(az, el):
15
         command = list(command str)
16
         az_pulse = angle_to_pulse(az)
17
         el_pulse = angle_to_pulse(el)
18
19
         command[3] = az_pulse[0]
20
         command[5] = az pulse[1]
21
         command[7] = az_pulse[2]
22
         command[9] = az_pulse[3]
23
24
         command[10] = "0"
25
         command[11] = str(deg_res)
26
27
         command[13] = el_pulse[0]
28
         command[15] = el_pulse[1]
29
         command[17] = el_pulse[2]
30
         command[19] = el_pulse[3]
31
32
         command[20] = "0"
33
         command[21] = str(deg_res)
34
35
        return "".join(command)
36
37
     def encode_command(msg):
38
        return bytes.fromhex(msg)
39
40
     def decode command(msg):
41
        response\_string = msg.hex()
42
        H1 = int(response\_string[3:4], 16)
43
        H2 = int(response\_string[5:6], 16)
44
        H3 = int(response\_string[7:8], 16)
45
        H4 = int(response\_string[9:10], 16)
46
        V1 = int(response\_string[13:14], 16)
47
        V2 = int(response\_string[15:16], 16)
48
         V3 = int(response\_string[17:18], 16)
49
        V4 = int(response\_string[19:20], 16)
50
51
         # Calculate angles for Az/El
52
        az = round((H1 * 100) + (H2 * 10) + H3 + (H4 / 10) - 360, 1)
53
         el = round((V1 * 100) + (V2 * 10) + V3 + (V4 / 10) - 360, 1)
54
55
        return (az, el)
56
```
A.3. control.py

Este script permite la comunicación con el controlador del telescopio a través de un socket UDP. Permite enviar comandos para mover el telescopio, detenerlo y consultar su estad. A su vez tiene los parametros de movimiento que aseguran que cada movimiento no ponga en riesgo los cables con el pedestal. También incluye un hilo para recibir mensajes del controlador y otro para enviar los comandos.

```
1 import spid
<sup>2</sup> import socket
3 import numpy as np
4 import threading
5 import sys
6 import time
7
8 movement_monitor = False
9 \text{ stop\_threads} = \text{False}
10 position = 0,0
11 stop_position = 0,0
12
  # Function to handle receiving messages from the server
13
  def receive_messages(sock):
14
      global stop_threads
15
      global position
16
      global stop_position
17
18
      sock.settimeout(1.0)
19
      while not stop_threads:
20
         if stop_threads:
21
            break
22
23
         try:
            message = sock.recv(1024)
24
            if message:
25
               position = spid.decode_command(message)
26
               print(f"Current position -> EL: {position[1]} AZ: {position[0]}")
27
28
            else:
29
               print("Connection closed by the server.")
30
               stop\_threads = True
31
32
         except socket.timeout:
33
            continue
34
35
         except OSError:
36
            break
37
38
         except ConnectionAbortedError:
39
            print("Connection was closed.")
40
            break
41
         except Exception as e:
42
            print(f"Error: {str(e)}")
43
            break
44
```

```
# Function to handle sending messages to the server
46
  def send_messages(sock):
47
     global stop_threads
48
     global position
49
     global stop_position
50
     global movement_monitor
51
52
     while not stop_threads:
53
        message = input("").split(" ")
54
55
        if movement monitor:
56
            msg = spid.encode_command(spid.status_str)
            if stop_position == position:
58
               movement\_monitor = False
60
        if message[0] == "stop":
61
            msg = spid.encode_command(spid.stop_str)
62
            print("Stoping Telescope Movement")
63
64
        if message[0] == "status":
65
            msg = spid.encode_command(spid.status_str)
66
            print(f"Actual Position: ")
67
68
        if message[0] == "park":
69
            msg = spid.encode\_command(spid.build\_command(0,90))
70
            print("Moving to park position")
71
72
        if message[0] == "service":
73
            msg = spid.encode\_command(spid.build\_command(0,0))
74
            print("Moving to service position")
75
76
        if message[0] == "restart":
77
            msg = spid.encode_command(spid.restart_str)
78
79
        if message[0] == "move":
80
            if len(message) < 2:
81
               print("The command has missing arguments: move [move type] [position] ... ")
82
            elif message[1] == "elaz":
83
               if len(message) < 4:
84
                  print("Elevation and Azimuth movement needs the 2 position arguments")
85
               else:
86
                  msg = spid.encode_command(spid.build_command(str_to_f(message[3]),
87
      \hookrightarrow str_to_f(message[2])))
                  stop_pos = message[2], message[3]
88
                  print(f"Moving to El - Az {message[2]} - {message[3]}")
89
                  movement monitor = True
90
91
            elif message[1] == "el":
92
               if len(message) < 3:</pre>
93
                  print("Elevation movement missing argument")
94
               else:
95
```

45

```
msg = spid.encode_command(spid.build_command(str_to_f(position[0]),
96
       \hookrightarrow str_to_f(message[2])))
                   print(f"Moving to El {message[2]}")
97
             elif message[1] == "az":
98
                if len(message) < 3:
99
                   print("Azimuth movement missing argument")
100
                else:
101
                   msg = spid.encode_command(spid.build_command(str_to_f(message[2]),
102
       \hookrightarrow str_to_f(position[1])))
                   print("Moving to Az {message[2]}")
103
104
         if message[0].lower() == 'exit':
105
             print("Closing connection...")
106
             stop\_threads = True
107
             sock.close()
108
109
             break
110
          try:
111
             sock.sendall(msg)
112
          except Exception as e:
113
             print(f"Error: {str(e)}")
114
             stop\_threads = True
115
             break
116
      sys.exit()
117
118
   def str_to_f(x):
119
      return round(float(x),1)
120
121
   def follow_ra_dec(ra,dec):
122
      pass
123
124
125
   def main():
126
      global stop_threads
127
      global position
128
      global stop_position
129
130
      # Define server address and port
131
      host = "10.17.89.223" # or '127.0.0.1' or server IP address
132
      port = 23
                       # Ensure this port matches the server's port
133
134
      # Create a socket object
135
      sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
136
137
138
      try:
          # Connect to the server
139
          sock.connect((host, port))
140
          print(f"Connected to server {host}:{port}")
141
142
          # Read the actual position of the antenna
143
          sock.sendall(spid.encode_command(spid.status_str))
144
          time.sleep(0.01)
145
```

```
angles = spid.decode_command(sock.recv(1024))
146
         position = angles
147
          #angles = position
148
          print(f"Actual Position: Elevation: {position[1]} - Azimuth: {position[0]}")
149
150
      except Exception as e:
151
         print(f"Connection error: {str(e)}")
152
         return
153
154
      # Start the receiving thread
155
      receive_thread = threading.Thread(target=receive_messages, args=(sock,))
156
      receive_thread.start()
157
158
      # Start the sending thread (this is the main thread)
159
      send_messages(sock)
160
161
      # Wait for the receiving thread to finish (if connection closed)
162
      receive_thread.join()
163
164
      sys.exit()
165
166
167 if _____name__
                  == "____main____":
      main()
168
```

A.4. astrortl.py

Este codigo contiene funciones para conectarse a un receptor RTL-SDR, configurar sus parámetros y recibir datos. También incluye funciones para procesar la serie muestras de IF y calcular el espectro de frecuencias.

```
import socket
     import time
2
3
     import numpy as np
     import struct
4
     import time
5
6
     def send_command(socket, command, value):
7
        socket.send(struct.pack('>BI', command, int(value)))
8
9
     def set_up_rtl(socket, central_freq, sample_rate= 2.048e6, gain_mode=0, gain_index
10
      \hookrightarrow =29, freq_correction = 0):
        #Set up central freq
11
        send_command(socket, 0x01, central_freq)
12
        print(f"Central freq set to: {central_freq}")
13
14
        #Set sample rate
15
        send_command(socket, 0x02, sample_rate)
16
        print(f"Sample Rate set to: {sample_rate}")
17
18
        #Set gain mode
19
        send_command(socket, 0x03, gain_mode)
20
```

```
print(f"Gain mode set to: {gain_mode}")
21
22
         #Set gain by index
23
         send_command(socket, 0x0d, gain_index)
24
         print(f"Gain index set to: {gain_index}")
25
26
         #Set freq correction
27
         send_command(socket, 0x05, freq_correction)
28
         print(f"Freq correction set to: {freq_correction}")
29
30
      def connect_to_rtl(host="127.0.0.1", port=1234):
31
         sdr_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
32
         sdr_socket.connect((host, port))
33
         return sdr_socket
34
35
      def receive_data(socket, samples=4096):
36
         buffer_size = samples
37
         socket.recv(2048)
38
         raw_data = b''
39
40
         while len(raw_data) < buffer_size:</pre>
41
            chunk = socket.recv(buffer_size - len(raw_data))
42
            if not chunk:
43
               raise RuntimeError("Socket connection closed while receiving data.")
44
            raw_data += chunk
45
         #data = np.ctypeslib.as_array(raw_data)
46
         #iq = raw_data.astype(np.float64).view(np.complex128)
\overline{47}
         #iq /= 127.5
48
         #iq -= (1 + ij)
49
50
         iq = [complex(i/(255/2) - 1, q/(255/2) - 1)] for i, q in zip(raw_data[::2], raw_data
51
      \hookrightarrow [1::2])]
52
         return iq
53
54
      def compute_fft(iq_samples, sample_rate):
         fft\_size = len(iq\_samples)
56
         spectrum = np.fft.fftshift(np.fft.fft(iq_samples, fft_size))
         spectrum_power = 20 * np.log10(np.abs(spectrum) + 1e-12) # Convert to dB with
58
      \hookrightarrow numerical stability
         freqs = np.fft.fftshift(np.fft.fftfreq(fft_size, d=1/sample_rate))
59
         return freqs, spectrum_power
60
```

A.5. cpt_rtl_adquisition.py

Este script automatiza la observación configurando el receptor y definiendo el tamaño de cada espectro obtenido y a su vez controla el guardado de los espectros en un archivo .npy. El script se ejecuta indefinidamente, guardando los espectros cada 10000 muestras y reiniciando el buffer de datos o hasta que el usuario termine la observación.

```
1 import astrortl as rtl
```

```
<sup>2</sup> import numpy as np
3 import matplotlib.pyplot as plt
4 from collections import deque
5 import threading
6 import time
7
8 fft_size = 4096
_9 samples = 0
<sup>10</sup> sdr_socket = rtl.connect_to_rtl(host="10.17.89.224", port=1234)
n rtl.set_up_rtl(sdr_socket, 1420e6)
12 file = 0
13
14 buffer = []
15
  def data_acquisition(socket, buffer, fft_size):
16
      freqs, fft = rtl.compute_fft(rtl.receive_data(socket, fft_size), fft_size)
17
      fft = fft - 80
18
      buffer = np.append(buffer, fft)
19
         #time.sleep(0.1) # Simulate a 10 Hz sampling rate
20
21
   while True:
22
      try:
23
         freqs, fft = rtl.compute_fft(rtl.receive_data(sdr_socket, fft_size), fft_size)
24
         fft = fft - 80
25
         buffer.append(fft)
26
         if samples == 10000-1:
27
            np.save(f"spectras/milky_way_{file}.npy", np.array(buffer))
28
            buffer = []
29
            print(f"Saving buffer {file}")
30
            file = file + 1
31
32
            samples = 0
33
         else:
34
            samples = samples + 1
35
      except:
36
         sdr_socket.close()
37
```

A.6. spectra_avg.py

```
import numpy as np
1
       import os
2
3
       avg_spectra = []
4
       file = 1
5
6
       while True:
7
          files = os.listdir('spectras')
8
          files = [s \text{ for } s \text{ in files if ".npy" in } s]
9
          try:
10
              if len(files)>4:
11
```

```
current = f'spectras/{min(files)}'
12
               data = np.load(current)
13
               mean = np.mean(data, axis=0)
14
               avg_spectra.append(list(mean))
               os.remove(current)
16
               print(len(avg_spectra))
17
         except: pass
18
19
         if len(avg_spectra) == 100:
20
            np.save(f"spectras/sun_avg_{file}.npy", np.array(avg_spectra))
21
            avg_spectra = []
22
            print(f"Saving avg buffer {file}")
23
            file = file + 1
24
25
            samples = 0
26
27
         if len(os.listdir('spectras'))>10:
28
            print('Too many files')
29
            break
30
```

A.7. rp_rtl_spectrum.py

Script utilizado para medir el patrón de radiación con la fuente de calibración, incluyendo todas las conversiones de elevación y azimuth para mantener la referencia del patrón

```
1 import socket
2 import time
3 import numpy as np
4 import struct
5 import matplotlib.pyplot as plt
6 import time
7 import spid
8 import decimal
9 import csv
10 import pandas as pd
11 import astrortl
12
  def angle_azimuth_conv(az):
13
     return 261 - (90 - az)
14
15
  def angle_elevation_conv(az):
16
     return (1-2*(abs(az)*np.pi/180)/np.pi)*7
17
18
  def angle_azimuth_conv_el(el):
19
     if el < 0:
20
        return 180 + 171
21
22
     else:
23
        return 171
24
25
26 def angle_elevation_conv_el(el):
```

```
if el < 0:
27
28
        return 173 + el
29
30
     else:
31
        return el + 7
32
33
34
  def send_angle(az, host='10.17.89.223', port = 23):
35
     with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as client_socket:
36
         client_socket.connect((host, port))
37
        message = spid.encode_command(spid.build_command(round(float(
38
      \leftrightarrow angle_azimuth_conv(az)),1), round(float(angle_elevation_conv(az)))))
         client_socket.sendall(message)
39
40
  def send_angle_el(el, host='10.17.89.223', port = 23):
41
     with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as client_socket:
42
         client_socket.connect((host, port))
43
        message = spid.encode_command(spid.build_command(round(float(
44
      \hookrightarrow angle_azimuth_conv_el(el)),1), round(float(angle_elevation_conv_el(el)))))
         client_socket.sendall(message)
45
```

Anexo B. Diagramas mecanicos

B.1. Soporte para tetrápodo

B.3. Soporte para estrella artifical

B.4. Soporte para alimentador de alto ancho de banda

B.5. Soporte para alimentador del dipolo de ARTE