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DESIGN, IMPLEMENTATION AND TESTING OF A REAL-TIME
ELECTROMAGNETIC INTERFERENCE DETECTOR AND CLASSIFIER FOR THE

FIVE-HUNDRED-METER APERTURE SPHERICAL TELESCOPE (FAST)

One source of astronomical interest to study are Fast Radio Bursts (FRBs), high-power
emissions produced in astrophysical processes of an unknown nature. Their power densities
in the frequency domain look like Gaussians moving from higher frequencies to lower fre-
quencies on millisecond (ms) time scales.

With technological development, the amount of devices that radiate radio signals increa-
ses, which is received by a radio telescope as Radio Frequency Interference (RFI). Since the
power of these signals are several orders of magnitude greater than those coming from astro-
nomical sources, the effect of RFI is a problem for which detection and mitigation techniques
are necessary.

This work presents a review of the detection and mitigation techniques for the design,
implementation and testing of a real-time RFI detector in the detection of FRBs. The detec-
tion score is mathematically derived to be used with a threshold dependent on the type of
RFI present.

The detector is tested in conjunction with a FRB detector, where from a total of 1801
FRB detections, 1791 were identified as coming from RFI, eliminating 99.4448% of the de-
tected data corresponding to interference.

The characterization of the received spectra is also studied, generating new characteristics
using the statistical moments, the maximum and the minimum of the spectra. This is done
in order to cluster the data to identify concentrations in space that depend on the type
of interference, such as broadband or narrowband. No relationship is found between the
classification of the signals and the chosen features, so the exploration of new features that
better characterize the spectra is proposed as future work.
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DISEÑO, IMPLEMENTACIÓN Y PRUEBAS DE UN DETECTOR Y CLASIFICADOR
DE INTERFERENCIA ELECTROMAGNÉTICA EN TIEMPO REAL PARA EL
TELESCOPIO ESFÉRICO DE QUINIENTOS METROS DE APERTURA (FAST)

Una fuente de interés astronómico son las ráfagas rápidas de radio (FRBs, del inglés Fast
Radio Bursts), emisiones de gran potencia producidas en procesos astrofísicos de naturaleza
desconocida. Al ver sus densidades de potencia en el dominio de la frecuencia, se ven como
gaussianas que se desplazan a frecuencias menores en escalas de tiempo de milisegundos (ms).

Con el desarrollo tecnológico, aumenta la cantidad de dispositivos que emiten señales
de radio, las que son recibidas por un radiotelescopio como interferencia de radiofrecuencia
(RFI, del inglés Radio Frequency Interference). Dado que las potencias de estas señales son
varios órdenes de magnitud mayores que las que provienen de las emisiones astronómicas, el
efecto de RFI es un problema por lo que son necesarias técnicas de detección y mitigación.

Este trabajo presenta una revisión de las técnicas de detección y mitigación para el diseño,
implementación y pruebas de un detector de interferencia de radiofrecuencia en tiempo real,
para la reducción de falsos positivos en la detección de FRBs. Se deriva matemáticamente un
puntaje de detección de interferencia para ser utilizado con un umbral dependiente del tipo
de RFI presente.

El detector fue probado en conjunto con un detector de FRBs, donde de un total de 1801
detecciones de FRBs, identificó a 1791 como proveniente de RFI, eliminando un 99,4448%
de la data correspondiente a interferencia.

También se estudió la caracterización de los espectros recibidos, generando nuevas ca-
racterísticas utilizando los momentos estadísticos, el máximo y el mínimo de los espectros.
Esto se realiza con el fin de agrupar los datos para identificar concentraciones en el espacio
que dependan del tipo de interferencia, como si es de banda ancha o banda angosta. No se
encuentra una relación entre la clasificación de las señales y las características escogidas, por
lo que se propone como trabajo futuro la exploración de nuevas características.
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Chapter 1

Introduction

An astronomical source will emit radiation in a certain range of frequencies, given by the
nature of the source’s astrophysical processes. In particular, fast radio bursts (FRBs) are
very powerful radio emissions of unknown origin and are therefore objects of astronomical
interest. Furthermore, as the atmosphere in this frequency range is transparent, the FRBs
pass through it, allowing their reception at the Earth’s surface using radio telescopes. This
atmosphere property led to the development of wireless communication with devices that
broadcast on the radio. When measuring the source of interest with a radio telescope, it will
also receive other radio emissions coming through the antenna in the form of Radio Frequency
Interference (RFI).

The number of devices that emit radio signals has increased over time, thus producing an
increase in the amount of radio-frequency interference (RFI) signals that, when produced on
the earth’s surface, have a power of up to eleven orders of magnitude higher than the weak
signals of interest. From this arises the need for methods that are capable of detecting RFI
signals to carry out some action. Usually the detection is used to mitigate the effects that
RFI has on the observation.

1.1. Thesis Scope
This work focuses on the implementation of a real-time electromagnetic interference de-

tector, modeling it to be compiled and loaded into a field-programmable-gate array (FPGA)
that will execute the model. A script must also be made to communicate with the FPGA
to read the important data of the model, and perform tests, emulating RFI signals with
laboratory equipment and performing tests with antennas in astronomical measurements.

A classification method will be explored, generating characteristics in the antenna test da-
taset, and then reducing its dimensionality by having the features that have more information
about the dataset.

1.2. Objectives

1



1.2.1. General Objective
Design, implement, and test a RFI detector and classifier, that uses the signals from

the primary (sky) and a reference antenna, for the Five-hundred-meter Aperture Spherical
Telescope (FAST). The detector will be implemented in a field-programmable-gate array
(FPGA). Due to its high throughput rate, a necessary condition given that the detector has
to work in real time.

1.2.2. Specific Objectives
Study the RFI detection and mitigation methods used in astronomy, understanding
their advantages, limitations and effectiveness depending on the type of interference.

Study the polyphasic filter bank theory for the realization of a spectrometer.

Design and implement the detector in an FPGA.

Test the designed detector in a controlled laboratory environment and in a real case of
astronomical measurements.

1.3. Structure
In chapter one, the document studies RFI detection and mitigation methodologies, as well

as feature generation and dimensionality reduction methods to classify it using clusters in
chapter 2. Then the work environment is presented in chapter 3 since it is necessary to work
with an FPGA. In chapter 4 the methodologies used to achieve detection and classification
are presented, showing the implementation of the model in an FPGA, chapter 5 shows the
limitations of the detector. Tests are carried out and their results are presented and analyzed
in Chapter 6. Chapter 7 presents the main conclusions and in Chapter 8 with suggested
future work.

2



Chapter 2

Theoretical Background

2.1. Detection techniques

2.1.1. Time-domain
These methods try to detect RFI sources in a time series, or a stream of samples spaced

in time. For instance consider a pulsed radar, the detectors used in this type of RFI are called
pulse detectors, which compare the power of the signal received with a threshold, as shown in
figure 2.1. Although this method is theoretically simple to understand, in practice is impor-
tant that the threshold considers the changes in the system temperature, adding additional
complexity to the implementation process. For example in [1] a time-domain threshold was
demonstrated by Fridman et al. in 1996.
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Figure 2.1: Example of pulse detection using a threshold.

2.1.2. Polarimetry
Typically thermal noise produced by a natural source is weakly or not polarized, on

the other hand RFI are commonly linearly or circularly polarized, so measuring the Stokes
parameters, which are a set of four values that relate with the polarity of the signal, leads a

3



method to detect RFI

2.1.3. Gaussianity tests
Thermal emission by a natural source as well as thermal noise have a Gaussian distri-

bution as opposed to RFI which has a non-Gaussian behaviour, so a difference with this
statical function indicates the presence of RFI. Even though numerous methods exist to test
Gaussianity in real time, the kurtosis detection algorithm is the most widely used, in which
a deviation of the Kurtosis value κ = 3 according to

κ = N ·∑N(x− µx)4

(∑N(x− µx)2)2 , (2.1)

suggest a non-Gaussian component, where N is the number of data samples, x is the value
of the data sample and µx is the mean value of the signal. The kurtosis method works with
a wide variety of RFI types, but for pulsed sinusoidal interference the detection is poor,
in which case it’s possible to improve detection performance by subsampling in time and
frequency. In [2] the author studied the Shapiro-Wilk test of Gaussianity as an alternative
detection method.

Another example of this method is to measure the spectral kurtosis which tests the
Gaussianity in the frequency domain. The receiver bandwidth is divided into sub-channels
by means of the Fast Fourier Transform (FFT) to calculate de kurtosis of each sub-channel
separately. If the data is divided intoM sub-vectors xi(k) of length NSK , the spectral kurtosis
is

κs(m) = M

M − 1

[
(M + 1) ·∑M

i=1 |Xi(m)|4

(∑M
i=1 |Xi(m)|2)2

− 2
]
, (2.2)

where Xi(m) is the Discrete Fourier Transform (DFT) of xi(k) and m is the frequency bin
of each sub-channel. For both kurtosis methods the detection is independent of the level and
changes of brightness temperature scene. On the other hand it is necessary to accumulate
data in vectors of size N or NSK in order to determines the kurtosis value decreasing the
time resolution. However the spectral kurtosis method has a better spectral resolution, also
it’s important to consider that the effectiveness of the detection depends on the type of RFI,
the number of data used to calculate the spectral kurtosis of a channel is NSK times smaller
than the kurtosis method, implying that the first one has a lower sensitivity. However, the
fact that the bandwidth of the sub-channels of the spectral kurtosis method is M times
smaller than the other method, indicates that the interference-to-noise ratio (INR) is better,
it’s important to mention that an RFI spreading over two or more sub-channels will reduce
the INR so may need some signal processing to keep same performance, so an increase of the
number of bins will improve the detection probability to a maximum [3].

2.1.4. Spectral Density Estimation
The Spectral Density Estimation (SDE) has many different implementations, one of them

is Barlett method which isn’t the best method in performance but is one of the simple SDE
algorithms and if it’s implemented in a system that already has a kurtosis detection method,
the Barlett method first calculations steps are the same than the kurtosis algorithm, reducing

4



the costs associated with the hardware involved in these process.

The Barlett method determines the SDE dividing the data into M sub-vectors Xi(k) of
size NSDE, then a DFT is applied to each vector, calculating its squared magnitude averaged
over i, and divided by πN with i ∈ {1, 2, ...,M}.

2.1.5. Cyclostationary RFI
An interference signal is called cyclostationary if its autocorrelation function is constant

over time with periodicity T , Rodolphe Weber [4] et al. demonstrate a real time mitigation
method based on the detection of this kind of RFI signals, the hardware implementation was
made on a field-programmable-gate array (FPGA) due their speed, high data throughput
and reconfigurability. The detector only works with interference signals with known T values,
although it can be improved to deal with unknown periodicities cyclostationary interference
signals.

2.2. Mitigation Techniques

RFI Mitigation
Techinques

Techincal
methods

Regulatory
methods

Offline Data
Proccesing

Digital 
Subsystems

RF Frontend and
Baseband

Subsystems

Controlling
Observatory

Generated RFI
Radio Quiet Zones

(External RFI)

Figure 2.2: Basic scheme of mitigation techniques [5].

2.2.1. Regulatory methods
These methods act directly on the RFI sources, taking actions over the interference ge-

nerated on the observatory devices or establishing quiet zones around the telescope with
different rules depending on the distance to the source.

2.2.1.1. Radio Quiet Zones

Radio Quiet Zones (RQZ) are areas in which radio transmission are heavily restricted in
order to facilitate scientific research. For instance the RQZ established surrounding FAST
has a surface of 2827 km2 and a radius R of 30 km, this area is divided into three subsections;
the restriction zone is the central subsection with R < 5 km, the central area is where 5 km <
R < 10 km and the remote area is defined for 10 km < R < 30 km, these last two regions are
called as coordination zone. The figure 2.3 shows the restriction zone established for FAST
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telescope.

On the restriction zone any kind of external transmission is forbidden, meanwhile in the
coordination zone operators can transmit as long as they coordinate with the FAST telescope
operators, unless the emissions exceed 100W of power in the same frequency bands that FAST
operates, in which case any transmission is prohibited. [6].

Figure 2.3: Restriction zone of the RQZ established around FAST te-
lescope, the circumference has a radius of 5 km.

2.2.1.2. Controlling Observatory Generated RFI

It is important to control RFI emissions that may occur in facilities, so shielding should
be considered in certain areas or equipment. Common devices such as computers, high-power
devices, network devices have broadband and characteristic spectral line emissions, so it is
also necessary to shield these equipments.

2.2.2. Technical methods
These methods deal with RFI that is already present in the environment. There are a

large number of mitigation techniques, which can be classified into three categories.

2.2.2.1. RF Frontend and Baseband Subsystems

The RFI is mitigated at the beginning of the reception chain so that it does not pass to
the backend of the system, one way to do this is to design antennas with a highly directive
radiation pattern, in practice there is a main lobe that points to the astronomical object and
unwanted side lobes by which other emissions are received. A radiation pattern with these
conditions is shown in the figure 2.4.
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Figure 2.4: Radiation pattern of a directional antenna.

If the emission spectrum of the astronomical object is known, other frequencies that are
outside the range of interest can be discarded through frequency filters such as band-pass or
notch filters.

2.2.2.2. Digital Subsystem

Digital subsystem techniques take place after signal digitization and before permanent
storage, so digital processing must be fast enough to work in real time. To meet this condition
FPGAs are used, which are devices with logic blocks whose interconnections are determined
by a description language.

The spectral kurtosis is used as an indicator because, as in the case of the time domain,
most of the astronomical signals have a Gaussian behaviour while most of the RFI have a
non-Gaussian one. In [7] an estimator based on spectral kurtosis is implemented in a FPGA,
considering as detection when the estimator exceeds a certain threshold. These detection
methods, in which an estimator is compared with a certain value, are known as thresholding
techniques.

In addition to mentioned techniques there is another group based on the subtraction of
two signals, the signal from the main antenna having information of the object of study
and the RFI signal and a reference antenna only it has information of interference. This
subtraction cannot be calculated directly, to do this, adaptive filters are commonly used,
as shown in figure 2.5, the RFI signals that enter through both antennas are correlated as
they are the product of the same sources. The adaptive filter determines this correlation,
updating a set of values in which the components that correlate survive, that is the RFI.
By subtracting this output of the adaptive filter from the signal of the main antenna, the
interference will be mitigated. [8].
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Figure 2.5: Adaptive filter cancelling the interference signal. Extrac-
ted from http://www.das.uchile.cl/lab_mwl/publicaciones/Tesis/
tesis_franco_curotto.pdf

2.2.2.3. Offline Data Processing

As the data that these techniques use has already been stored, the processing time is not
a limitation as in the case of digital subsystems in real time. Machine learning techniques
can be used or thresholding techniques using different statistics.

2.3. Cross-correlation
Digital Signal Processing (DSP) uses mathematical tools on discrete signals to achieve

some purpose, as in this case, the implementation of a detector. In particular, the cross-
correlation between two discrete signals x[n] and y[n] measure the similarity between them
when they are displaced from each other by k, it’s defined as

(x[n] ? y[n]) [m] ,
∞∑

n=−∞
x∗[n−m] · y[n], (2.3)

Autocorrelation measures the similarity between a signal and a delayed version of it with a
delay m, this function reaches its maximum when m = 0 comparing the signal with itself. It
can be expressed as

rxx[m] =
∞∑

n=−∞
x∗[n−m] · x[n] (2.4)

The Discrete Fourier Transform (DFT) is a discrete transform that converts a temporary
discrete sequence x[n] into an equivalent representation in the frequency domain X[k]. The
DFT is an approximation of the continuous-time Fourier Transform and is given by

X[k] =
N−1∑
n=0

x[n] · e−
j2π
N
kn (2.5)

2.4. Spectrometers
A spectrometer is a device that measures the power spectral density (PSD) of a digitized

signal, this density can be computed mainly in two ways, taking the autocorrelation of the
signal and calculating the DFT using equation 2.4 in 2.6, or converting the signal to the
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frequency domain and then computing the autocorrelation (which is different from the tem-
poral case), this last method will be studied in depth below.

The Wiener–Khinchin theorem states that the power spectral density (S[k]) is related
with the autocorrelation by

S[k] =
∞∑

k=−∞
rxx[m]e

−j2π
N

kn, (2.6)

which can be interpreted as the DFT of the autocorrelation of the signal, which is equivalent
to

S[k] = X∗[k] ·X[k] = ‖X[k]‖2, (2.7)

whereX∗[k] denotes the conjugate of the DFT of x[n], the derivation of this result is developed
in Annex A.1, a diagram of these two methods is shown in the figure 2.6.

x[k] x[n] · x[n− k] ∑
x[n] · x[n− k]

X[k] ‖X[k]‖2 S[k]

Figure 2.6: Two methods to calculate the PSD of a digitized signal
x[k] [9].

The DFTs, depending on the sampling frequency and the number of channels, can generate
spectral leakage, this occurs when the energy corresponding to a certain frequency f0, spreads
in the spectral channels close to this frequency, because the DFT assumes that the signal
is periodic, and the time series to transform is equivalent to one period of it. To reduce the
impact of this phenomenon, Polyphase Filterbanks (PFBs) are used before calculating the
DFTs , mitigating the leakage in nearby spectral channels as shown in figure 2.7. Due to their
effect on DFT leakage, PFBs are commonly used in the implementation of spectrometers and
correlators.

Figure 2.7: Comparison of DFT leakage, when using PFBs before FFT.
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2.5. Feature generation
The generation of characteristics is the process of adding new characteristics to a data

set, this can be done for example through the calculation of various statistics adding new
information. The objective of generating characteristics is to find some that have important
information to describe the process that generates it, but since there are also dimensionality
reduction methods, characteristics can be added without knowing their impact on the model,
to later be reduced by algorithms eliminating the characteristics that do not contribute.

In [10] an extension to a commonly used power spectrum parameterization is proposed,
which consists of the truncation of the Taylor series defined by ln PSD(k) = lnPSD∗+ (n∗−
1) ln(k/k∗) + 1

2n
′
∗ ln2(k/k∗), this assumes that the values from the fourth term of the series

are negligible. This method is used when
∣∣∣n′∗ ln(k/k∗)

∣∣∣ � |n∗ − 1|, but it is shown that for
current observations, the method also works when

∣∣∣n′∗ ln(k/k∗)
∣∣∣ ∼ |n∗ − 1|.

Another approach is used in [11], where an RFI mitigation method is proposed from the
instantaneous spectra and the probability distributions that dominate them, measuring the
Gaussianity to define a detection. The first four statistical moments corresponding to the
mean, variance, skewness and kurtosis are calculated, the last three correspond to measures
of how the data are spread, a measure of the lack of symmetry and a measure of Gaussianity,
being the kurtosis of a gaussian distribution equivalent to three times the squared variance.
Also in [12] a way of classifying broadband and narrowband signals is presented.

Broadband signals are defined as signals with a bandwidth greater than the bandwidth of
an ADC channel determined by the Nyquist Sampling Theorem, on the contrary, if the signal
is totally contained in its bandwidth, it is classified as narrowband. Thus measurements of
the average and the maximum of a spectrum have a relationship between broadband and
narrowband classification.

2.6. Dimensionality reduction
Two dimensionality reduction methods are presented, which transform a dataset to a

smaller one, containing the n characteristics that best characterize the data according to
their own methodologies.

2.6.1. PCA
Principal Component Analysis (PCA) is a dimensionality reduction method eliminating

features that do not provide information. This method calculates the normalized mean of the
dataset, calculates its Covariance Matrix and the Eigen Vector and Eigen Value Matrix. The
new characteristics are a linear combination of the previous ones, having the components that
provide the most information arranged according to the Eigen Values in decreasing order.
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2.6.2. t-SNE
T-SNE is a technique to visualize datasets in 2D and 3D plots converting Euclidean

distances between dataset points into conditional probabilities that represent them, to make
possible data structures visible, the probability p of xj given xi is

pj|i = e−‖xi−xj‖
2/2σ2

i∑
k 6=i e

−‖xi−xk‖2/2σ2
i

, (2.8)

where σi is the variance of a Gaussian centered on xi. In the same way for a low-dimensional
counterpart yi and yj, qj|i is defined as

qj|i = e−‖yi−yj‖
2/2σ2

i∑
k 6=i e

−‖yi−yk‖2/2σ2
i

. (2.9)

This method works by minimizing the cost function

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pj|i log pj|i
qj|i

, (2.10)

where Pi is the conditional probability distribution for all dataset points with respect to xi,
Qi represents the same distribution for yi and KL is the Kullback-Leibler divergence [13].

2.7. Clustering
Clustering methods are automated algorithms that find concentration structures in the

dataset, this section shows the K-Means method to introduce this type of techniques.

2.7.1. K-Means
K-means is an unsupervised clustering algorithm that, given a dataset, assigns K random

centroids where K corresponds to the number of clusters to be formed, these centroids are
updated in the algorithm. Considering the Euclidean distance between two samples of the
dataset x = (x1, x2, · · · , xn)T and y = (y1, y2, · · · , yn)T defined as

‖x− y‖ =
√√√√ n∑
i=1

(xi − yi)2, (2.11)

K centroids are randomly assigned, the euclidean distance to the nearest centroid is calculated
for each sample of data and is associated with it. After this, the average of the data associated
with each cluster is calculated to update the centroid value to this mean, it is iterated until
the value of the centroids stops changing.
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Chapter 3

Work environment

The detector design must be implemented in a ROACH-2-rev2 board, an FPGA developed
by CASPER (Collaboration for Astronomy Signal Processing and Electronics Research), who
also developed a library with useful blocks for processing astronomical signals for MATLAB.
The models are implemented in Simulink and compiled using Xilinx ISE Design Suite.

A virtual python 2.7 environment is needed in order to process data and establish com-
munication with the FPGA. The following sections will delve into the hardware, compilation
and programming tools used for the development of this work.

3.1. ROACH-2
A field-programmable gate array (FPGA) is a semiconductor device which has a large

number of Configurable Logic Blocks (CLBs), which can do basic digital operations through
small components such as flip-flops, look-up tables (LUTs) and multiplexers. These blocks
are surrounded by routing channels, which can be thought of as cables that carry the digital
signals between blocks, the interconnection of these routes is done through the configuration
of the interconnection switches. The Input/Output Block (I/O Block) is to interface with
the board, the figure 3.1 shows a basic diagram of a FPGA with these components. More
advanced FPGAs implement more complex blocks such as RAM blocks, multipliers, and DSP
blocks to simplify the design and reduce the use of resources.
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Figure 3.1: FPGA basic diagram [8].

ROACH-2 (Reconfigurable Open Architecture Computing Hardware) rev 2 is the suc-
cessor of ROACH board, its main component is the Virtex-6 XC6VSX475T FPGA, which
has 2016 DSP48E1 blocks and 74400 CLBs. Some functions that can be performed on the
DSP48E1 are multiply, three-input add, barrel shift, magnitude comparator, bit-wise logic
functions and pattern detect [14], a slice of this block is shown in figure 3.2.

8 www.xilinx.com Virtex-6 FPGA DSP48E1 User Guide
UG369 (v1.3) February 14, 2011

Chapter 1: DSP48E1 Description and Specifics

Full Compatibility with the Virtex-5 FPGA DSP48E Slice
The Virtex-6 FPGA DSP48E1 slice is fully compatible with the Virtex-5 FPGA DSP48E slice. 
This section describes the legacy DSP48E features present in the Virtex-6 FPGA DSP48E1 
slice. 

The DSP slice consists of a multiplier followed by an accumulator. At least three pipeline 
registers are required for both multiply and multiply-accumulate operations to run at full 
speed. The multiply operation in the first stage generates two partial products that need to 
be added together in the second stage. 

When only one or two registers exist in the multiplier design, the M register should always 
be used to save power and improve performance.

Add/Sub and Logic Unit operations require at least two pipeline registers (input, output) 
to run at full speed.

The cascade capabilities of the DSP slice are extremely efficient at implementing high-
speed pipelined filters built on the adder cascades instead of adder trees. 

Multiplexers are controlled with dynamic control signals, such as OPMODE, ALUMODE, 
and CARRYINSEL, enabling a great deal of flexibility. Designs using registers and 
dynamic opmodes are better equipped to take advantage of the DSP slice’s capabilities 
than combinatorial multiplies.

In general, the DSP slice supports both sequential and cascaded operations due to the 
dynamic OPMODE and cascade capabilities. Fast Fourier Transforms (FFTs), floating 
point, computation (multiply, add/sub, divide), counters, and large bus multiplexers are 
some applications of the DSP slice. 

X-Ref Target - Figure 1-1

Figure 1-1: Virtex-6 FPGA DSP48E1 Slice

UG369_c1_01_052109

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources. 
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Figure 3.2: Virtex-6 FPGA DSP48E1 Slice. Extracted from https://
www.xilinx.com/support/documentation/user_guides/ug369.pdf
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Other important components of the ROACH-2 dev 2 are the PowerPC 440EPx stand-
alone processor that runs Linux to provide control functions, which allow to reconfigure and
interface the FPGA with other devices through Ethernet. It also has two ZDOKs docking
connectors for the connection of two Analog-Digital Converters (ADCs), particularly the ADC
boards used are the ADC1x5000-8, which can operate as one-channel mode with a resolution
of 8 bits and 5 GSPS for one input or in a two-channel mode with the same resolution but 2.5
GSPS for two inputs. Also a Valon 5007 synthesizer provides clock reference for both ADCs.
Figure 3.3 shows the ROACH-2 dev 2 block diagram and the figure 3.4 shows a photo of the
board with these devices and a Power Supply Unit (PSU) that powers the system.

Figure 3.3: ROACH-2 rev 2 block diagram. Exctracted from https:
//casper.ssl.berkeley.edu/wiki/ROACH-2_Revision_2
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Figure 3.4: ROACH-2 dev 2 board, using two ADCs and a synthesizer
to provide clock for both ADCs

3.2. Hardware description
To describe the circuit that will be implemented in the FPGA, Hardware Description

Language (HDL) is used, which is a specialized programming language to describe the beha-
viour or structure of the circuit, a graphic design software can also be used. In both cases,
the methodology is designed to be interpreted by humans, so a compilation tool is necessary
that generates a bitstream file, this file is interpretable by the FPGA and contains the con-
figurations of the resources of the board, to implement the circuit.

Xilinx, the developer of the Virtex FPGAs used in the ROACH-2 board, also provides
tools for the design and compilation of a circuit, through its ISE Design Suite software. For the
design, Xilinx makes available a library of basic blocks for Simulink, a graphical programming
environment present in MATLAB. CASPER used these blocks to make its own library with
more advanced capabilities, such as complex math operations, accumulators, FFT blocks and
PFB blocks.
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3.3. Compiler
The ISE Design Suite allows the generation of the bitstream file for the FPGA, working

in parallel with Simulink, from where it extracts the model of the circuit to compile.

3.4. Communication
In order to read the data of interest from the model and change its parameters through

registers, it is necessary to generate a script to communicate with the ROACH-2 board.
Casper and the digital group of the Milimeter-Wave Laboratory (MWL) of Universidad de
Chile made the corr and calandigital libraries respectively, which facilitate communication
and data analysis. Since these libraries are made in the Python 2.7 programming language,
it is the language used for the detector and classifier script.
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Chapter 4

Methodology

4.1. Formalization of the problem
FRB detections made by FAST and other telescopes have a significant number of false

positives due to RFI, leading to increased use of hardware for storage and processing, so it
is necessary to implement a real-time RFI detector to avoid these negative effects. For its
realization, a main antenna that receives an astronomical signal contaminated with RFI and
a reference antenna that only receives RFI must be considered, in addition to the need to
work in real time, it must be implemented in a FPGA. It is also important to characterize
the present RFI for future considerations, so an RFI classifier must be designed without the
need for it to work in real time.

Bibliography related to hardware limitations, RFI detection, mitigation and classification
methods is studied to define detector and classifier methodologies. Once these are determi-
ned, the work environment is prepared and the knowledge to use it has been acquired, the
detector is modeled and compiled to configure the resources of a FPGA. Laboratory tests
with signal generators and antennas under real conditions are performed to verify and analy-
ze the detector’s operation. Then the classifier is implemented and tested with measurements
previously stored in the detection, using the detector’s output. A flow chart summarizing the
work carried out is shown in figure 4.1.
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Figure 4.1: General flow chart.

4.2. Tutorials
To get acquainted with the tools used to model, compile, and communicate with the

FPGA, calandigital and CASPER provide tutorials to teach how to use blocks such as FFT,
PFB, accumulators, and Block Random Access Memory (BRAM), in addition to showing how
to compile a model and communicate with the board to upload the bitstream file, configure
and establish connection for data transfer. The main activities were the implementation of a
snapshot to see a plot of the ADC output, and of a spectrometer plotting the PSD.

4.2.1. Snapshot

This activity1 shows how to read the ADC output data stored in BRAMs in the ROACH-
2 trough Ethernet on a computer, and plotting it in real time using python. The model is
shown in figure 4.2, as the ADC sample in rising and falling edge of the clock because it is
in one-channel mode and as it has 16 parallel outputs, the frequency value to be set in the
Valon 5007 must be 8 times less than the desired sample rate. Figure 4.3 shows a plot of the
ADC data, which is stored in a BRAM to be read by the computer.

1 Available on https://sites.google.com/site/calandigital/tutorials/snapshot-tutorial.
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Figure 4.2: Snapshot model in Simulink.

Figure 4.3: 10 Mhz sinusoidal signal sampled at 2GSPS. Ex-
tracted from https://sites.google.com/site/calandigital/tutorials/
snapshot-tutorial.

4.2.2. Spectrometer

A spectrometer2 is modeled in Simulink, which has registers that can be read and overw-
ritten through a script, to reset the circuit or change the amount of accumulations. The
model calculates the FFT of the ADC output using PFBs, then the power of each channel
is calculated to be accumulated, once this process ends, its value is saved in BRAMs and
another accumulation cycle begins, which will overwrite the BRAMs values of the respec-
tive addresses. Figure 4.4 shows the model implemented in Simulink with sixateen parallel
outputs.

2 Avilable on https://casper.ssl.berkeley.edu/wiki/Wideband_Spectrometer.
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Figure 4.4: Spectrometer model in Simulink.

4.3. Detector

4.3.1. Design
Figure 4.5 shows the general methodology to be used for detection, by quantitatively

measuring the similarity between the primary signal a(t) + i(t) and the reference signal r(t),
where r(t) it only measures RFI because its radiation pattern points toward the horizon.
If both signals are correlated it is because the antennas are measuring mainly RFI, on the
contrary, if the value is low it means that there is an astronomical component and/or there
is no RFI presence. When using the normalized correlation as a measure of similarity, the
score µ(f), or coherence in [15] for the analog case can be written as

µ = ‖CPSD‖2

PSDmain · PSDref
, (4.1)

where PSD is the power spectral density and CPSD is the cross power spectral density bet-
ween the main and reference signals.

Considering the implementation diagram of figure 4.6, whereN samples were accumulated
to reduce the variance and eliminate the uncorrelated components, more details in the section
4.3.2. The score is calculated for each bin of the FFT, let Xj,k and Yj,k with j ∈ [0, N−1] and
accumulation N be the k -th outputs of the FFTs corresponding to the main and reference
signal respectively, (4.1) becomes

µk =

∥∥∥∥∥∥
N−1∑
j=0

Xj,k · Y ∗j,k

∥∥∥∥∥∥
2

N−1∑
j=0
‖Xj,k‖2 ·

N−1∑
j=0
‖Yj,k‖2

. (4.2)
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Figure 4.5: Score calculation for threshold detection.

Figure 4.6: Diagram of the detector implementation. The FFTs outputs
show just one spectral channel for readability.×∗ represents conjugated
multiplication and Accum the accumulation.

4.3.2. Power interpretation
Considering the k-th channel of the FFT of each digitized input signal as Xj,k = Aj,k+Ij,k

and Yj,k = Rj,k as shown in figure 4.6, for an accumulation N (4.2) remains as:

µk =

∥∥∥∥∥∥
N−1∑
j=0

(Aj,k + Ij,k) ·R∗j,k

∥∥∥∥∥∥
2

N−1∑
j=0
‖Aj,k + Ij,k‖2 ·

N−1∑
j=0
‖Rj,k‖2

=

∥∥∥∥∥∥
N−1∑
j=0

Aj,k ·R∗j,k +
N−1∑
j=0

Ij,k ·R∗j,k

∥∥∥∥∥∥
2

N−1∑
j=0
‖Aj,k + Ij,k‖2 ·

N−1∑
j=0
‖Rj,k‖2

, (4.3)

21



Aj,k and R∗j,k are not correlated, the phase of the multiplication between them is random, on
the other hand, Ij,k and R∗j,k are correlated, so the phase of their multiplication is constant.
For a sufficiently large value N of accumulations, the contribution of the uncorrelated terms
will be negligible compared to those that do correlate, then (4.3) becomes

µk =

∥∥∥∥∥∥
N−1∑
j=0

Ij,k ·R∗j,k

∥∥∥∥∥∥
2

N−1∑
j=0
‖Aj,k + Ij,k‖2 ·

N−1∑
j=0
‖Rj,k‖2

. (4.4)

Since Ij,k and Rj,k correspond to the RFI signals measured by each antenna, they are
correlated, so the complex number Ij,k · R∗j,k has constant phase φ0, this and the fact that
‖a · b‖ = ‖a‖ · ‖b‖ allows the substitution

∥∥∥∥∥∥
N−1∑
j=0

Ij,k ·R∗j,k

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
N−1∑
j=0

∥∥∥Ij,k ·R∗j,k∥∥∥ · ejφ0

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
N−1∑
j=0

∥∥∥Ij,k ·R∗j,k∥∥∥
∥∥∥∥∥∥

2

·
∥∥∥ejφ0

∥∥∥2

=
N−1∑
j=0

∥∥∥Ij,k ·R∗j,k∥∥∥
2

=
N−1∑
j=0
‖Ij,k‖ ·

∥∥∥R∗j,k∥∥∥
2

(4.5)

also if it is assumed that ‖Rj,k‖2 = α · ‖Ij,k‖2, where alpha depends on parameters such
as frequency, spectral channel, distance between antennas, angles of incidence and antennas
gain, so it is a complex value to compute, using this condition, the result obtained in (4.5)
and the fact that ‖a‖2 = a · a∗ where ∗ represents the conjugate, the equation (4.4) can be
rewritten as

N−1∑
j=0
‖Ij,k‖ ·

∥∥∥R∗j,k∥∥∥
2

N−1∑
j=0
‖Aj,k + Ij,k‖2 ·

N−1∑
j=0
‖Rj,k‖2

=

N−1∑
j=0
‖Ij,k‖ ·

√
α
∥∥∥I∗j,k∥∥∥

2

N−1∑
j=0
‖Aj,k + Ij,k‖2 ·

N−1∑
j=0

α‖Ij,k‖2

=
α ·

N−1∑
j=0

∥∥∥Ij,k · I∗j,k∥∥∥
2

α ·
N−1∑
j=0
‖Aj,k + Ij,k‖2 ·

N−1∑
j=0
‖Ij,k‖2
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=

N−1∑
j=0
‖Ij,k‖2

2

N−1∑
j=0
‖Aj,k + Ij,k‖2 ·

N−1∑
j=0
‖Ij,k‖2

=

N−1∑
j=0
‖Ij,k‖2

N−1∑
j=0
‖Aj,k + Ij,k‖2

(4.6)

Without the presence of interference, the score has a value of µk = 0 according to (4.6),
when the power of the RFI increase so does the score up to a maximum value of µk = 1 that
occurs when ‖Aj,k‖ is negligible compared to ‖Ij,k‖ or when ‖Aj,k‖ = 0. This result allows
the detector to be interpreted as the power ratio between the RFI in the main signal and its
total power.

4.3.3. Model implementation
The FRBs of interest are detected between 1.2 and 1.8 Ghz, so the sampling rate must

be 1.2 GHz according to the Sampling Theorem, also undersampling is used in the third
Nyquist zone to martch the desired frequency range, these concepts are presented in chapter
5.1 . Since the frequency of the Valon 5007 must be 8 times less than the desired sample rate,
the model will be implemented to operate at 150 mhz.

The implementation of the diagram of figure 4.6 in Simulink is shown in figure 4.7,
where a main and a reference signal are digitized with 8 parallel outputs of 8 bits per input
in the orange block, in the purple blocks, a FFT of 2048 channels is calculated for the
main and reference parallel outputs using PFBs to decrease the leakage between spectral
channels. The output of each FFT has 4 parallel channels, but each value is complex, so they
have an imaginary component, these values are received by the blue blocks that represent
mathematical operations, calculating the squared module of each spectral channel of the
FFT, and their conjugate multiplication, in other words, the main PSD, reference PSD and
the CPSD between them are calculated. These values are accumulated in the green blocks
with an accumulation N that depends on the value of a register of the FPGA, so that its
value can be changed through a script. After accumulation, the outputs are re-quantized to
18 bits in the light blue blocks, because it is very expensive in terms of FPGA resources to use
certain Simulink blocks with inputs with a higher number of bits, considering a bandwidth of
600 Mhz and 2048 spectral channels. The accumulated and requantized values of the PSDs
and CPSD are operated according to 4.2 and stored in BRAMs, along with other values of
interest to be read and processed by a script. In the requantization process, a window with
the 18 most significant bits is selected, before this process the value is shifted to the left m
bits, where m is the value stored in a register.
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Figure 4.7: Simulink model of the detector.

4.3.4. Detector script
Using Python 2.7 to communicate with the FPGA over Ethernet, the BRAMs correspon-

ding to the 2048-channel spectrometers of the main and reference signal are read to analyze
the results of the score and debug the script and/or model. Data without requantizing is also
read to visualize information lost by this process. Additionally, the values corresponding to
the score µk of each channel are read, including the numerator and denominator data of the
division corresponding to (4.2).

In addition to reading the data from the board, three registers of the FPGA are written
by the script to interact with the model, there is a register to control the resetting of the
model blocks, and another two registers with the values of the accumulation and detector
gain, the last is used to move the 18-bit window in the requantization process.

Figure 4.8 shows the Graphical User Interface (GUI) of the implemented script, where the
data stored in the BRAMs is plotted in real time, adding a rectangular area corresponding to
the 18-bit window, which can be modified as well as the accumulation through the graphical
interface that plots the data. Annex B.1 and Annex B.2 show the scripts corresponding to
the GUI detector and its parameters, B.3 the scripts of the detector simulation.
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Figure 4.8: Detector script graphical interface.

A script was also made to simulate the input and reference signals using a Gaussian
tone and noise with an SNR of 15 dB, in order to analyze the behaviour of the detector
and compare it with measurements of injected tones in the laboratory. After this experience,
the model is tested using two 1.4 GHz omnidirectional antennas as input. The diagrams
corresponding to the circuits with the necessary components for these measurements are
shown in figures 4.9 and 4.10.

Figure 4.9: Component connection diagram to inject tones as main and
reference inputs.
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Figure 4.10: Component connection diagram using omnidirectional 1.4
GHz antennas as main and reference inputs.

4.4. Classifier

4.4.1. Design
New features are generated by calculating the first statistical moments, minimum and

maximum over the data spectrum. As these features contain information about the type of
distribution as shown in section 2.5, and as the maximum and average allow classifying bet-
ween broadband and narrowband signals, these statistics will be used as features.

Subsequently, the dimensionality of the data is reduced using PCA and t-SNE to cluster
using K-means and the score, so that for any value at 0.5, it is assumed as RFI detection.

Finally, the components that contain the most information are plotted using the two
dimensional reduction methods indicated and clustered with K-means and the score µk.
Figure 4.11 shows a diagram of the classifier methdology.

Figure 4.11: Classifier block diagram.

4.4.2. Script
A script is performed in Python to plot the data, when its dimensionality is reduced using

PCA and t-SNE, and when it is clustered using K-means and the score. The code of this
implementation is shown in Annex B.4.

The script also allows clicking on each point of the plot, to visualize the PSDs of the main
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and reference signals, in order to be able to visually analyze the relationship between the
labels and the spectra.
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Chapter 5

Detector and classifier limitations

5.1. Time Quantization
The digitization of a continuous signal in an ADC is carried out by measuring the signal

every certain time interval defined by the sampling frequency fs. The Sampling Nyquist
Theorem states that when sampling an analog signal, the sample rate must be at least twice
the value of the signal’s bandwidth. If the signal has a bandwidth BW , mathematically this
inequality can be expressed as

fs ≥ 2 ·BW (5.1)

When calculating the DFT according to 2.5, there is a multiplication by an exponential
imaginary argument, so its values will wrap around 2 ·BW . In this way, any spectrum that is
contained between i ·BW and (i+1) ·BW will be seen in the first Nyquist zone when i is even
as shown in figures 5.1 and 5.2, but for odd values, the spectrum will also be horizontally
inverted. The power densities of the signals that coincide in the same frequency ranges in the
first Nyquist zone will be added together.

Figure 5.1: Example of the spectrum of a signal with frequency com-
ponents greater than the ADC Nyquist BW , showing the first three
Nyquist zones.
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Figure 5.2: Digitization of a signal with a bandwidth greater than BW .

This also allows a sampling technique called undersampling, when sampling with a band-
width BW , and using a bandpass filter at the nyquist area of interest, the information will
be fully contained in the first Nyquist area after sampling, if the filter is used in an even-
numbered zone, the frequency axis must be reversed.

5.2. Amplitude Quantization
Digitization also approximates the analog values of the signal, if the ADC has a reso-

lution of N bits, there will be a quantity of 2N values to approximate the signal, adding a
quantization noise corresponding to the difference between the original and quantized signals
as shown in figure 5.3. The signal to noise ratio produced by this phenomenon is

SNR = N · 6.02 dB + 1.76 dB, (5.2)

when injecting a sinusoidal signal whose RMS value coincides with the maximum digital
value of the ADC, if this relationship is considered for a single channel of a FFT with size
M [8], it becomes

SNR = N · 6.02 dB + 1.76 dB + 10 · log10

(
M

2

)
dB. (5.3)
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Figure 5.3: Example of a signal and its quantization, the difference
between them correspond to the quantization error.

5.3. Frequency Quantization
The bandwidth of a spectral channel of the FFT, corresponds to its frequency resolution

BWm, which is defined as

BWm = BW

M
(5.4)

If two components from different sources are contained within the same spectral channel,
after calculating the FFT there will be a unique value for this channel, so the information
from both sources is mixed making them indistinguishable.

5.4. Detector Quantization
It is necessary to re-quantize the representation of the numbers to decrease the use of

FPGA resources, detector output is 32 bits with a representation corresponding to the square
module of the CPSD and PSDs respectively. Thus, the calculation of decibels is done on the
module without being squared, half of the bits are considered, obtaining a representation
with a precision of 48 dB, when calculating

10 · log10
(
216
)

= 48 dB. (5.5)
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Chapter 6

Results and analysis

6.1. Detector

6.1.1. Simulations
The detector is simulated to analyze the impact of the accumulation and how it behaves

depending on it. For this purpose, figures 2.3 and 2.4 show score plots and PSDs in two cases
of interest, when both the main signal and the reference signal have a tone of 200 MHz, or
when it is only present in the main signal. In addition to this, a Gaussian noise is added to
each input to have an SNR of 15 dB.

The effect of the accumulation on the PSDs and their multiplication, is the elimination
of Gaussian noise as shown in Figures 6.1a, 6.1b and 6.1d, due the contributions of the noise
to the spectral channels power tend to the same value, the spectrum signal shifts upward.
On the other hand the integration of the CPSD does not show the same behaviour, it does
not eliminate the gaussian noise, but as the accumulation increases the noise floor decreases
as seen in figures 6.1a and 6.2a, in the last figure, the tone regardless of the accumulation,
has the same amplitude, which is expected according to (4.4), where it was used that for
a sufficiently large N , the contribution of Aj,k ·R∗j,k is negligible as they are not correlated,
but Ij,k ·R∗j,k survives by having constant phase. In this case, the tone of figure 6.1c and the
gaussian noise can be considered as Aj,k as they are not correlated with the reference signal,
having a score of 0 for every channel in 6.4e when accumulating, in contrast, the tones of
figure 6.2c correspond to Ij,k and Rj,k since they are correlated reaching a score of 1 for 200
Mhz in 6.2e when accumulating.

By not using PFBs before calculating the DFT, the effect of the leakage will be greater
in the simulation than the real implementation, this behaviour can be seen in the PSDs of
figures 6.1a, 6.2a and 6.2b. The effect of leakage on the score can be seen in figure 6.2e, where
in the vicinity of the tone frequency the score has a non zero value.

When there is no accumulation, the score is equal to one for all the frequencies in figures
6.1e and 6.2e, in both cases the CPSD is equal to the multiplication of the PSDs of the main
and reference signals. This behaviour is explained mathematically according to 4.2, where by
not accumulating it becomes
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µk = ‖Xk · Y ∗k ‖
2

‖Xk‖2 · ‖Yk‖2 (6.1)

= ‖Xk‖2 · ‖Yk‖2

‖Xk‖2 · ‖Yk‖2 (6.2)

= 1. (6.3)
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(a) Main integrated PSD.
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(b) Reference integrated PSD.0 100 200 300 400 500 600
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(c) Integrated CPSD between main and refe-
rence signal.
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(d) Integrated PSDs multiplied between main
and reference signal.
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(e) Score between main and reference signal.

Figure 6.1: Simulation of a 200Mhz tone in one input with SNR = 15
dB, and equivalent gaussian noise in the reference input, acc denotes
accumulation.
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(a) Main integrated PSD.
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(b) Reference integrated PSD.0 100 200 300 400 500 600
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(c) Integrated CPSD between main and refe-
rence signal.
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(d) Integrated PSDs multiplied between main
and reference signal.
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(e) Score between main and reference signal.

Figure 6.2: Simulation of a 200Mhz tone in two inputs with SNR =
15 dB, acc denotes accumulation.

6.1.2. Experimental Tests
To compare with the simulation, the same experiment is carried out implementing it in

the FPGA, injecting a 1300 Mhz tone. Figures 1 and 2 show the detector GUI for when tone
is injected into one or both FPGA input. As the bandwidth is 600 MHz, the 1300 MHz tone
is seen as a 100 MHz tone in the first Nyquist zone. Because of this, when plotting the third
Nyquist zone, the harmonics of the 1300 MHz tone are every 100 MHz.

Figures 6.4a, 6.5a and 6.5b show tone peaks and their harmonics. There is also the pre-
sence of other peaks in the plots that correspond to ADC calibration errors, which, being
present in the digitization of the primary and reference signal, are correlated so they will
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have a value in the score.

Unlike the simulation, the use of PFB is done before calculating the DFT, in graphs 6.4e
and 6.5e the score corresponding to the tones has no leakage effect. The score value in figure
6.5e shows high score values when the tone is in both inputs, compared to figure 6.4e, where
the values are lower, considering an accumulation of 4096.

The implementation of this test is shown in figure 6.3, according to 4.9, where a signal
generator emits a tone of 1300 MHz with -4 dbm that passes a DC-block to eliminate any
continuous component that can leak and damage a component. The signal enters a variable
attenuator to decrease the peak power so that it remains within the red window shown in
figures 6.4 and 6.5, which corresponds to where the data is well represented in the detector.
Then the signal goes into a splitter to connect to the main and reference signal, the photo
shows the case when it is only connected to the main one.

Figure 6.3: Circuit corresponding to the injection of a tone as the main
input of the board. Reference channel is not connected.
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Figure 6.4: Detector GUI with a tone of 1300 MHz as the main signal
and no reference signal injected.
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Figure 6.5: Detector GUI with a tone of 1300 MHz as main and refe-
rence signals.
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To test the detector in a more realistic environment, measurements are made using two
1.4 GHz omnidirectional antennas as the main and reference signals. Both signals are am-
plified by 32 and 40 dB, where the last one corresponds to the main one and a variable
attenuator is used to control signal power, figure 6.6 shows the circuit corresponding to these
measurements, according to 4.10.

Since this test were carried out in a building in the center of the city so there is a lot of
radio emissions. Figure 6.7 shows the GUI of the circuit of figure 6.6. As both antennas are
so close and have the same radiation pattern, they should have a very similar PSD, implying
a large number of score values close to one. On the contrary, the frequencies where there are
no emissions have values close to zero because the noise floors are not correlated. Figure 6.7c
shows what happens when a value smaller than that of the window is quantized, equating
it to the noise floor of the ADC, on the other hand, if a value exceeds the maximum of the
window, it will be wrapped around the floor of noise.

Figure 6.6: Circuit corresponding to two 1.4 Ghz omnidirectional an-
tennas as the main input of the board.
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Figure 6.7: Detector GUI with two 1.4 Ghz omnidirectional antennas
as inputs.

The detector is used in the implementation of the Astronomical Radio Transients Ex-
periment (ARTE) project developed by the MWL of the Universidad de Chile, which is an
array of antennas with a radiation pattern made for the angular distribution of the Milky
Way in order to study FRBs in it, with a 600 MHz bandwidth. Also a digital Direction of
Arrival (DoA) is used to locate the sources in the sky. The detector is used to reduce the
amount of false positives in the detection of FRBs, and not to save unnecessary data such
as the location of the source. ARTE implementation is used to take measurements in a real
environment of astronomical observations to see the behavior of the detector. This is done
at the facilities of the Department of Astronomy located in Cerro Calán in Las Condes.

Figure 1.2 shows the arrangement of the antennas during the test, where the radiation
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received by two of the atenna arrays are combined, synthesizing them into a main signa. The
reference antenna whose radiation pattern points to the horizon as the reference, a band pass
filter is used between 1200 and 1800 Mhz before digitizing the signals.

for all FRBs detections, it is verified if any of the spectral channels of the corresponding
score exceeds a value of 0.5, of the 1801 FRB detections produced, 1791 meeting the thres-
hold condition corresponding to 99.4448% of the detections. In this case, given that the RFI
appears sporadically and in few spectral channels simultaneously, this threshold can be used,
but depending on the characteristics of the RFI, the detection condition must change, the
score values being still valid.

In figure 6.8 GUI of the detector is shown with the measurements made with the antennas
of figure 6.8 for a spectrum contaminated with RFI, specifically between 1600 and 1700 MHz,
the presence of a tone corresponding to RFI that appears in 6.9a and 6.9b, having a score
value for that spectral channel according to 6.9e greater than 0.5, the rest of the spectrum
has values close to zero except for some components that correlate.

Unlike figure 6.7, the window is sufficient to represent the data well and the plot of 6.9c
shows a clear decrease in the power of the CPSD, compared to the multiplication of the main
and reference PSDs 6.9d, indicating low values for the score.

Figure 6.8: Antennas configuration to take measurements.
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(a) Main integrated PSD.
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(e) Score between main and reference signal.

Figure 6.9: Detector GUI with two directional antennas as inputs.

To characterize the measured RFI, the main emission sources are identified, associated
with the frequency bands in which the devices that generate them work [16]. Figure 6.10
shows a spectrum of the main signal, with the frequency bands corresponding to different
RFI sources.
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Figure 6.10: RFI frequency bands, for a main signal spectrum.

6.2. Classifier
Figures 6.11a and 6.11c show the use of PCA to decrease the dimensionality of the dataset

obtained from ARTE measurements, with a size of 2765 by 6, corresponding to the number of
samples and features. This features are the first four statistical moments and the maximum
and minimum for each spectrum of the main signal dataset. Classifying according to the
score and K-means, different numbers of clusters are tested and analyzed using the GUI of
the script to determine if the clusters are representative, allowing access to the spectrum of
any point in figure 6.11. Similarly in Figures 6.11b and 6.11d the same procedure is carried
out, using t-SNE as a tool for decreasing dimensionality.

When analyzing the clusters generated by K-Means, no relationship is seen between the
points and the spectra of the main and reference signal corresponding to it, regardless of
whether PCA or t-SNE is used. When using the score to classify RFI detections, data with
the same classification are concentrated in some places of the space in Figures 6.11b and
6.11d. Because the components that contribute the most to the decrease in dimensionality
are Skewness and Kurtosis, these clustering zones are mainly due to a measure of Gaussianity,
since the RFI has a non-Gaussian behaviour.
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(a) Clustering using PCA to reduce dimen-
sionality and K-means to label three clus-
ters.
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(b) Clustering using PCA to reduce dimen-
sionality and score threshold to label.
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(c) Clustering using t-SNE to reduce dimen-
sionality and K-means to label three clus-
ters.
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(d) Clustering using t-SNE to reduce di-
mensionality and score threshold to label.

Figure 6.11: Classifier GUI with two directional antennas as inputs.

Figure 6.12 shows a zoom to where the largest amount of data from 6.11b is concentrated
where there is no obvious clustering, but when moving away from this area the detections
are concentrated in the lower part of the plot, while the non-detections on top. However,
when analyzing the spectra, there is no clustering of characteristics such as whether the
source of the interference is broadband or narrowband. For figure 6.13 a concentration of
data classified as detections of figure 6.11d is shown, as for PCA, there are areas where there
is a clear clustering, and areas where a predominant class cannot be distinguished.
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Figure 6.12: Zoom
in of the figure
6.11b.
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Figure 6.13: Zoom
in on a cluster of fi-
gure 6.11b.

The GUI allows the visualization of the spectra and the score of each data plotted in
figure 6.11, the spectra and score of two data in figure 6.11b are shown in figures 6.14 and
6.15. Visually it is verified that if the maximum score value of a spectrum exceeds the value
of 0.5, the spectrum will be considered as contaminated, otherwise it will be considered clean.
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Figure 6.14: GUI example of a contaminated spectrum, using a value
of 0.5 as detection threshold.
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Figure 6.15: GUI example of a clean spectrum, using a value of 0.5 as
detection threshold.
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Chapter 7

Conclusions

This work presents the design, implementation and tests of a real-time RFI detector, with
a 600 Mhz bandwidth, an 8-bit ADC resolution, a spectral resolution of 293 kHz per spectral
channel, and a dynamic range of 48 dB, which can be shifted using the gain of the detector.
In addition to the exploration of a classification method using the statistical moments, ma-
ximum and minimum of the signal.

The implementation of the filter is done in real time and has the necessary parameters
in terms of resources and speed, to operate in real astronomical observations. Depending
on the type of RFI present in the observation, it is necessary to set the detector’s gain to
represent the signals, and choose a threshold accordingly, when making measurements in an
astronomical measurement environment where the RFI is sporadic, it is enough to use that
any spectral channel exceeds a certain value. Furthermore, this can be combined with other
mitigation techniques, such as flagging spectral channels with permanent RFI.

The derivation of the score was studied from the measure of normalized similarity between
two signals, showing that the detector can be interpreted as the ratio between the interference
power captured by the main signal and its total power, also considering the astronomical sig-
nal when accumulating enough so that the power contributions of the uncorrelated elements
are negligible.

The detector is tested with the array of antennas of the ARTE project of MWL, which
made 1801 detections in a time of 105 minutes, of which 1791 were identified as RFI, allowing
to eliminate a total of 99.4448% detections corresponding to RFI and not a FRB.

Power spectrum characterization methods were reviewed to classify RFI. In particular,
since the RFI is not Gaussian, and the mean and maximum are used as indicators to classify
broadband and narrowband signals, the first four statistical moments, the maximum and
minimum of a spectrum, are used as characteristics. There is a relationship between the
detections, given by the Gaussianity measure of the spectra, but clustering does not occur in
broadband or narrowband when using PCA and t-SNE to dimensionality reduction.
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Chapter 8

Future Work

It is proposed to study other methods of spectrum characterization, such as the Taylor
series expansion presented in [10]. In addition to this, other characteristics can be calculated
without knowing their relationship with the signals, because the dimensionality reduction
methods eliminate the characteristics that less provide information about the dataset. On
the other hand, when classifying only instantaneous spectra were considered, when the RFI
is a temporary event, so it can be approached as an image problem where the magnitude of
the spectra is represented with colors, as a function of frequency and time.

The detector works when the RFI signals are seen by both antennas, as the radiation
pattern of the reference one points towards the horizon, it is not capable of measuring RFI
present in the sky, such as that produced by satellite communications. In this way the detec-
tor is blind for these cases, and other mitigation and / or detection methods must be explored.

Also depending on the application, the detector can be used without the need for re-
quantizing to increase the dynamic range. This can be done by reducing the bandwidth and
the size of the FFT. In addition, in the final implementation, an ADC was used to measure
two signals, so changing the configuration so that it only measures one signal, allows to have
double the bandwidth and greater slack in the use of resources.
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Appendix A

Mathematical derivations

A.1. Power Spectral Density in terms of correlation
Let x[n] and y[n] be two discrete functions wich DFTs are respectively X[k] and Y [k],

the convolution of two discrete signals is defined as

(x[n] ∗ y[n]) [m] =
∞∑

n=−∞
x[m− n] · y[n] (A.1)

and the Convolution Theorem states that

x[n] ∗ y[n] = X[k] · Y [k]. (A.2)

The relationship between the correlation and the convolution is given by

(x[n] ? y[n]) [k] = (x∗[−n] ∗ y[n]) [k], (A.3)

so the DFT of the correlation using (A.3), the Time-Reversal Property which states that
DFT{x[−n]} = X[−k] and assuming x[n] and y[n] ∈ R, can be expressed as

DFT{x∗[−n] ? y[n]} = DFT{x∗[−n]} ·DFT{y[n]}
= DFT{x[−n]} ·DFT{y[n]}
= X[−k] · Y [k], (A.4)

where X[−k] can be conveniently becomes

X[−k] =
N−1∑
n=0

x[n] · e
j2π
N
kn

=
(
N−1∑
n=0

x[n] · e
−j2π
N

kn

)∗
= X∗[k]. (A.5)

Using this result, (A.4) takes de form of
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DFT{x∗[−n] ? y[n]} = X∗[k] · Y [k]. (A.6)

If equation (2.7) is interpreted as the DFT of the autocorrelation, and the result obtained
in (A.6) is used. The power spectral density S[k] of a signal x[n] can be written as

S[k] = DFT{x∗[−n]} ·DFT{x[n]}
= X∗[k] ·X[k]
= ‖X[k]‖2 (A.7)
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Appendix B

Scripts

B.1. Detector scripts

Código B.1: Detector main script.
1 import matplotlib
2 import numexpr
3 import math
4 import time
5 from matplotlib import patches as pat
6 from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
7 from matplotlib. figure import Figure
8 import Tkinter as tk
9 from matplotlib import animation

10 from detector_parameters import *
11 import calandigital as cd
12 import matplotlib.pyplot as plt
13 import matplotlib as mpl
14 import numpy as np
15 import os
16 from matplotlib.transforms import Bbox
17

18 matplotlib.use("TkAgg")
19

20 roach = cd. initialize_roach (roach_ip, boffile =boffile , upload=True)
21 roach.write_int(acc_len_reg, acc_len)
22 roach.write_int(detector_gain_reg, detector_gain)
23 roach.write_int(cnt_rst_reg, 1)
24 roach.write_int(cnt_rst_reg, 0)
25 roach.write_int(adq_trigger_reg, 1)
26 roach.write_int(adq_trigger_reg, 0)
27

28 root = tk.Tk()
29 root. configure(bg=’white’)
30

31 fig = Figure(figsize=(16, 8), dpi=120)
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32 fig .set_tight_layout(’True’)
33 ax1 = fig.add_subplot(321)
34 ax2 = fig.add_subplot(322)
35 ax3 = fig.add_subplot(323)
36 ax4 = fig.add_subplot(324)
37 ax5 = fig.add_subplot(325)
38 ax6 = fig.add_subplot(326)
39 # ax7 = fig.add_subplot(427)
40 axes = [ax1, ax2, ax3, ax4, ax5, ax6]
41 titles = ["Primary signal",
42 "Reference signal" ,
43 "Cross-Power Spectral Density",
44 "Power Spectral Densities Multiplied",
45 "Channel scores",
46 "Channel scores sum"]
47 # "Score derivative "]
48 lines = []
49 lines_full = []
50 t = []
51 scoresum = []
52 score_der_last = np.zeros(nchannels - 1)
53

54

55 def add_reg_entry(roach, root, reg):
56 frame = tk.Frame(master=root, bg="white")
57 frame.pack(side=tk.TOP, anchor="w")
58 label = tk.Label(frame, text=reg + ":", bg="white")
59 label .pack(side=tk.LEFT)
60 entry = tk.Entry(frame, bg="white")
61 entry. insert (tk.END, roach.read_uint(reg))
62 entry.pack(side=tk.LEFT)
63 button_double = tk.Button(frame, text=’x2’, command=lambda: reg_double(), bg="

↪→ white")
64 button_double.pack(side=tk.LEFT)
65 button_half = tk.Button(frame, text=’/2’, command=lambda: reg_half(), bg="white")
66 button_half.pack(side=tk.LEFT)
67 button_add = tk.Button(frame, text=’+1’, command=lambda: reg_add(), bg="white")
68 button_add.pack(side=tk.LEFT)
69 button_sub = tk.Button(frame, text=’-1’, command=lambda: reg_subtract(), bg="

↪→ white")
70 button_sub.pack(side=tk.LEFT)
71

72 def reg_double():
73 val = int(numexpr.evaluate(entry.get())) * 2
74 entry. delete (0, "end")
75 entry. insert (0, val)
76 roach.write_int(reg, val)
77 roach.write_int(cnt_rst_reg, 1)
78 roach.write_int(cnt_rst_reg, 0)
79
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80 def reg_half() :
81 val = int(numexpr.evaluate(entry.get())) / 2
82 entry. delete (0, "end")
83 entry. insert (0, val)
84 roach.write_int(reg, val)
85 roach.write_int(cnt_rst_reg, 1)
86 roach.write_int(cnt_rst_reg, 0)
87

88 def reg_add():
89 val = int(numexpr.evaluate(entry.get())) + 1
90 entry. delete (0, "end")
91 entry. insert (0, val)
92 roach.write_int(reg, val)
93 roach.write_int(cnt_rst_reg, 1)
94 roach.write_int(cnt_rst_reg, 0)
95

96 def reg_subtract():
97 val = int(numexpr.evaluate(entry.get())) - 1
98 entry. delete (0, "end")
99 entry. insert (0, val)

100 roach.write_int(reg, val)
101 roach.write_int(cnt_rst_reg, 1)
102 roach.write_int(cnt_rst_reg, 0)
103

104

105 add_reg_entry(roach, root, acc_len_reg)
106 add_reg_entry(roach, root, detector_gain_reg)
107

108 # Define plots patches
109 patches = []
110 for i in range(0, 4):
111 patches.append(pat.Rectangle((1200, 0), 600, 0, alpha=0.1, facecolor=’red’))
112 axes[ i ]. add_patch(patches[i])
113

114 # Define plots lines
115 for ax in axes [:4]:
116 line , = ax.plot ([], [], ’ r ’ , lw=0.7, label=’ full bits ’ )
117 lines_full .append(line)
118 for ax in axes:
119 line , = ax.plot ([], [], ’c’ , lw=1.3, label=’sliced ’ )
120 lines .append(line)
121 # if ax != ax5 and ax != ax6 and ax != ax3 and ax != ax7:
122 if ax != ax5 and ax != ax6 and ax != ax3:
123 ax.legend()
124

125 # Place canvas of plots and toolbar
126 canvas = FigureCanvasTkAgg(fig, master=root)
127 canvas.draw()
128 canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)
129 toolbar = NavigationToolbar2Tk(canvas, root)
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130 toolbar.update()
131 canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)
132

133

134 def init () :
135 # Initialize plots
136 for ax, title in zip(axes, titles ) :
137 ax.set_xlim(1200, bandwidth + 1200)
138 ax.set_ylim(-dBFS - 2, 0)
139 ax.set_xlabel(’Frequency (MHz)’)
140 ax.set_ylabel(’Power (dBFS)’)
141 ax. set_title ( title )
142 ax.grid()
143 ax5.set_ylim(-0.2, 1.2)
144 ax5.set_ylabel(’Score’)
145 ax6.set_xlim(0, 30)
146 ax6.set_xlabel(’Time (s)’)
147 ax6.set_ylim(-100, nchannels + 100)
148 ax6.set_ylabel(’Sum score’)
149 # ax7.set_ylim(-1.2, 1.2)
150 # ax7.set_ylabel(’Score derivative ’)
151 return lines
152

153

154 def run(i) :
155 # Update registers
156 acc_len = roach.read_uint(acc_len_reg)
157 detector_gain = roach.read_uint(detector_gain_reg)
158

159 # Get spectrometers data
160 specdata1 = cd.read_interleave_data(roach, specs_names[0], spec_addr_width,

↪→ spec_word_width, spec_data_type)
161 specdata2 = cd.read_interleave_data(roach, specs_names[1], spec_addr_width,

↪→ spec_word_width, spec_data_type)
162 specdata1 = np.delete(specdata1, len(specdata1) / 2)
163 specdata2 = np.delete(specdata2, len(specdata2) / 2)
164

165 # Get spectrometer sliced data
166 pow_factor = pwr_sliced_bits - detector_gain
167 specdata_sl1 = cd.read_interleave_data(roach, specs_sl_names[0], score_addr_width,

↪→ score_word_width,
168 score_data_type) * (2 ** (pow_factor))
169 specdata_sl2 = cd.read_interleave_data(roach, specs_sl_names[1], score_addr_width,

↪→ score_word_width,
170 score_data_type) * (2 ** (pow_factor))
171 specdata_sl1 = np.delete(specdata_sl1, len(specdata1) / 2)
172 specdata_sl2 = np.delete(specdata_sl2, len(specdata2) / 2)
173

174 # Get numerator and denominator of RFI score
175 numdata = cd.read_interleave_data(roach, score_names[0], score_addr_width,
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↪→ score_word_width,
176 score_data_type) * (2 ** (pow_factor * 2 + 4))
177 denomdata = cd.read_interleave_data(roach, score_names[1], score_addr_width,

↪→ score_word_width,
178 score_data_type) * (2 ** (pow_factor * 2 + 4))
179 numdata = [math.sqrt(numdata[i]) for i in range(0, len(numdata))]
180 numdata = np.asarray(numdata)
181 numdata = np.delete(numdata, len(specdata1) / 2)
182 denomdata = [math.sqrt(denomdata[i]) for i in range(0, len(denomdata))]
183 denomdata = np.asarray(denomdata)
184 denomdata = np.delete(denomdata, len(specdata2) / 2)
185

186 # Get score data
187 scoredata = cd.read_interleave_data(roach, score_names[2], score_addr_width,

↪→ score_word_width,
188 score_data_type) * 2 ** -30
189 scoredata = np.delete(scoredata, len(specdata1) / 2)
190

191 # Score derivative
192 global score_der_last
193 score_der = scoredata - score_der_last
194 score_der_last = scoredata
195

196 ## Save data
197 # config = ’data/cfg1_’
198 # filenames = [’specdata1.txt ’, ’specdata2.txt ’, ’specdata_sl1.txt ’, ’specdata_sl2.txt

↪→ ’, ’numdata.txt’,
199 # ’denomdata.txt’, ’scoredata.txt ’, ’timedata.txt ’]
200 # data_array = [specdata1, specdata2, specdata_sl1, specdata_sl2, numdata,

↪→ denomdata, scoredata, time.time()]
201 # for filename, data in zip(filenames , data_array):
202 # f = open(config + filename, ’ab’)
203 # np.savetxt(f , [data])
204 # f . close ()
205

206 # Normalize data by acc_len and convert to dBFS
207 specdata1db = cd.scale_and_dBFS_specdata(specdata1, acc_len, dBFS)
208 specdata2db = cd.scale_and_dBFS_specdata(specdata2, acc_len, dBFS)
209 specdata_sl1db = cd.scale_and_dBFS_specdata(specdata_sl1, acc_len, dBFS)
210 specdata_sl2db = cd.scale_and_dBFS_specdata(specdata_sl2, acc_len, dBFS)
211 numdatadb = cd.scale_and_dBFS_specdata(numdata, acc_len, dBFS)
212 denomdatadb = cd.scale_and_dBFS_specdata(denomdata, acc_len, dBFS)
213

214 # Power Spectral Density full bits , the product and squared root are calculated in
↪→ python

215 multdatadb = [(specdata1db[j] + specdata2db[j]) / 2 for j in range(len(specdata1db))]
216

217 # Add last score sum and time data
218 t .append(time.time() - time_start)
219 scoresum.append(np.sum(scoredata))
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220

221 # Acquisition trigger of brams
222 roach.write_int(adq_trigger_reg, 1)
223 roach.write_int(adq_trigger_reg, 0)
224

225 # Update fig lines
226 lines [0]. set_data(freqs, specdata_sl1db)
227 lines [1]. set_data(freqs, specdata_sl2db)
228 lines [2]. set_data(freqs, numdatadb)
229 lines [3]. set_data(freqs, denomdatadb)
230 lines [4]. set_data(freqs, scoredata)
231 lines [5]. set_data(t, scoresum)
232 # lines [6]. set_data(freqs, score_der)
233 lines_full [0]. set_data(freqs, specdata1db)
234 lines_full [1]. set_data(freqs, specdata2db)
235 lines_full [3]. set_data(freqs, multdatadb)
236

237

238 # Update x-limits of plots with time to see the last 30 seconds
239 # if t [-1] > 30:
240 # ax6.set_xlim(t [-1] - 30, t [-1])
241

242 # Update rectangle patches
243 for i in range(0, len(patches)) :
244 if i < 2:
245 y0 = 10 * np.log10(2 ** (pow_factor - np.log2(acc_len))) - dBFS
246 height = 10 * np.log10(2 ** 18)
247 else :
248 y0 = 10 * np.log10(2 ** (pow_factor + 2 - np.log2(acc_len))) - dBFS
249 height = 10 * np.log10(2 ** 16)
250

251 patches[ i ]. set_y(y0)
252 patches[ i ]. set_height(height)
253 return lines
254

255

256 time_start = time.time()
257 ani = animation.FuncAnimation(fig, run, interval=10, init_func=init)
258 root.mainloop()

Código B.2: Detector parameters.
1 # imports
2 import numpy as np
3

4 # communication parameters
5 roach_ip = ’192.168.1.12’
6 boffile = ’rfidet_div.bof.gz’
7

8 # model parameters
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9 adc_bits = 8
10 bandwidth = 600 # MHz
11 acc_len_reg = ’acc_len’
12 cnt_rst_reg = ’cnt_rst’
13 detector_gain_reg = ’detector_gain’
14 adq_trigger_reg = ’trigger’
15 spec_addr_width = 9 # bits
16 spec_word_width = 64 # bits
17 spec_data_type = ’>u8’
18 score_addr_width = 9 # bits
19 score_word_width = 32 # bits
20 score_data_type = ’>u4’
21

22 specs_names = [[’dout0_0’, ’dout0_1’, ’dout0_2’, ’dout0_3’], #
↪→ Primary signal

23 [ ’dout1_0’, ’dout1_1’, ’dout1_2’, ’dout1_3’]] #
↪→ Reference signal

24

25 specs_sl_names = [[’doutsl0_0’, ’doutsl0_1’, ’doutsl0_2’, ’doutsl0_3’], #
↪→ Primary signal sliced

26 [ ’doutsl1_0’, ’doutsl1_1’, ’doutsl1_2’, ’doutsl1_3’]] #
↪→ Reference signal sliced

27

28 score_names = [[’dout_num_0’, ’dout_num_1’, ’dout_num_2’, ’dout_num_3’], #
↪→ Power Spectral Density multiplied

29 [ ’dout_denom_0’, ’dout_denom_1’, ’dout_denom_2’, ’dout_denom_3’],
↪→ # Cross-Power Spectral Density

30 [ ’dout_score_0’, ’dout_score_1’, ’dout_score_2’, ’dout_score_3’]] #
↪→ Score

31

32 # experiment parameters
33 acc_len = 2 ** 12
34 detector_gain = 37
35 pwr_sliced_bits = 45
36

37 # derivative parameters
38 nchannels = 2 ** spec_addr_width * len(specs_names[0])
39 freqs = np.linspace(0, bandwidth, nchannels, endpoint=False) # MHz
40 freqs = np.delete(freqs , len( freqs ) / 2)
41 freqs = [x+1200 for x in freqs ]
42 dBFS = 6.02 * adc_bits + 1.76 + 10 * np.log10(nchannels)

Código B.3: Detector simulation.
1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Parameters
5 A = 10 # Amplitude
6 freq = 200 # Signal frequency (Mhz)
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7 phi = np.pi / 3 # Offset angle
8 dataLen = 2 ** 12 # Size data
9 accLen = 2 ** 7 # Integration length

10 snr = 20 # SNR (dB)
11 fm = 1080.0 # Sampling rate (Mhz)
12

13 # Define time series and initialize
14 t = np.flip(np.linspace(dataLen / fm, 0, dataLen, endpoint=False), 0)
15 PSD1 = []
16 PSD2 = []
17 CPSD = []
18

19 # Add noise to inputs
20 for i in range(0, accLen):
21 x1 = A * np.cos(2 * np.pi * t * freq)
22 x2 = A * np.cos(2 * np.pi * t * freq + phi)
23 # x2 = 0
24 p1 = np.mean(np.abs(x1) ** 2)
25 sigma_noise = np.sqrt(10 ** (np.log10(p1) - snr / 10))
26 noise1 = np.random.normal(0, sigma_noise, dataLen)
27 noise2 = np.random.normal(0, sigma_noise, dataLen)
28 x1 = x1 + noise1
29 x2 = x2 + noise2
30

31 # FFT and frequency arrays
32 f = np.fft . rfftfreq (dataLen, d=1 / fm)
33 X1 = np.fft. rfft (x1)
34 X2 = np.fft. rfft (x2)
35

36 # Power and cross-correlation
37 P1 = np.real(X1 * np.conj(X1))
38 P2 = np.real(X2 * np.conj(X2))
39 crosscor = X1 * np.conj(X2)
40 PSD1 = np.append(PSD1, P1 / dataLen ** 2)
41 PSD2 = np.append(PSD2, P2 / dataLen ** 2)
42 CPSD = np.append(CPSD, crosscor / dataLen ** 2)
43

44 PSD1 = np.reshape(PSD1, (accLen, len(f)))
45 PSD2 = np.reshape(PSD2, (accLen, len(f)))
46 CPSD = np.reshape(CPSD, (accLen, len(f)))
47 PSD1mean = np.mean(PSD1, 0)
48 PSD2mean = np.mean(PSD2, 0)
49 CPSDmean = np.mean(CPSD, 0)
50

51 ylim = ((-80, 20))
52

53 # Plot signal 1 PSD
54 c = 10 * np.log10(PSD1[-1])
55 plt .subplot(4, 2, 1)
56 plt .plot(f , c)

58



57 plt . title ("Main signal PSD")
58 plt . xlabel("Frequency (Mhz)")
59 plt . ylabel("Power (dB)")
60 plt .ylim(ylim)
61 plt .grid()
62 plt .xlim((0, fm / 2))
63

64 # Plot signal 2 PSD
65 d = 10 * np.log10(PSD2[-1])
66 plt .subplot(4, 2, 2)
67 plt .plot(f , d)
68 plt . title ("Reference signal PSD")
69 plt . xlabel("Frequency (Mhz)")
70 plt . ylabel("Power (dB)")
71 plt .ylim(ylim)
72 plt .grid()
73 plt .xlim((0, fm / 2))
74

75 # Plot instantaneous CPSD
76 a = 10 * np.log10(np.abs(CPSD[-1]))
77 plt .subplot(4, 1, 2)
78 plt .plot(f , a)
79 plt . title ("CPSD without integration")
80 plt . xlabel("Frequency (Mhz)")
81 plt . ylabel("Power (dB)")
82 plt .ylim(ylim)
83 plt .grid()
84 plt .xlim((0, fm / 2))
85

86 # Plot integrated CPSD module
87 b = 10 * np.log10(np.abs(CPSDmean))
88 plt .subplot(4, 2, 5)
89 plt .plot(f , b)
90 plt . title ("CPSD module after integration")
91 plt . xlabel("Frequency (Mhz)")
92 plt . ylabel("Power (dB)")
93 plt .ylim(ylim)
94 plt .grid()
95 plt .xlim((0, fm / 2))
96

97 # Plot CPSD integrated power
98 e = 10 * np.log10(np.mean(np.abs(CPSD), 0))
99 plt .subplot(4, 2, 6)

100 plt .plot(f , e)
101 plt . title ("CPSD module before integration")
102 plt . xlabel("Frequency (Mhz)")
103 plt . ylabel("Power (dB)")
104 plt .ylim(ylim)
105 plt .grid()
106 plt .xlim((0, fm / 2))
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107

108 # Plot CPSD integrated power
109 e = np.abs(CPSDmean) ** 2 / (PSD1mean * PSD2mean)
110 plt .subplot(4, 2, 7)
111 plt .plot(f , e)
112 plt . title ("CPSD Score")
113 plt . xlabel("Frequency (Mhz)")
114 plt . ylabel("Score")
115 plt .ylim ((-0.2,1.2) )
116 plt .grid()
117 plt .xlim((0, fm / 2))
118

119 print("Signal 1 Power")
120 print(" -Theoretical value: " + str(A ** 2 / 2 + sigma_noise ** 2))
121 print(" -Time density integration: " + str(np.mean(x1 ** 2)))
122 print(" -Frequency density integration : " + str(2 * np.sum(np.abs(X1) ** 2) / dataLen

↪→ ** 2))
123

124 plt . gcf() . suptitle ("Integration size : " + str(accLen))
125 plt . gcf() .set_size_inches(14.5, 7.5)
126 plt .tight_layout()
127 plt .show()

Código B.4: Classificator main script.
1 import matplotlib
2 import math
3 from sklearn.decomposition import PCA
4 from sklearn import preprocessing
5 from sklearn.manifold import TSNE
6 from sklearn. cluster import KMeans
7 from mpldatacursor import HighlightingDataCursor, DataCursor
8 import calandigital as cd
9 from sklearn import preprocessing

10

11

12 import scipy. stats
13 from scipy import stats
14 import numpy as np
15 import pandas as pd
16 import time
17 from matplotlib import patches as pat
18 from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
19 from matplotlib. figure import Figure
20 import Tkinter as tk
21 from matplotlib import animation
22 from detector_parameters import *
23 import calandigital as cd
24 import matplotlib.pyplot as plt
25
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26 matplotlib.use("TkAgg")
27 # score_der_last = np.zeros(nchannels - 1)
28

29 config = ’data/cfg3_’
30 filenames = [’specdata_sl1.txt’ , ’specdata_sl2.txt’ , ’numdata.txt’, ’scoredata.txt ’ ]
31 cdict = {0: ’red’ , 1: ’blue’ , 2: ’green’ , 3: ’cyan’, 4: ’black’}
32 ldict = {0: ’No detection’, 1: ’Detection narrowband’, 2: ’Detection broadband’}
33 xlabels = [’Principal Component 1’, ’Principal Component 1’, ’Main Feature 1’, ’Main

↪→ Feature 1’]
34 ylabels = [’Principal Component 2’, ’Principal Component 2’, ’Main Feature 1’, ’Main

↪→ Feature 1’]
35 titles = [’PCA with K-Means’, ’PCA with score, NB & WB decision’, ’t-SNE with K-Means

↪→ ’, ’t-SNE with score, NB & WB decision’]
36 colors = []
37 files = []
38 score = []
39 mean = []
40 var = []
41 skew = []
42 kurt = []
43

44 scoredata = pd.read_csv(config+’scoredata.txt’, delimiter=’ ’ , header=None)
45 specdata = pd.read_csv(config+’specdata_sl1.txt’, delimiter=’ ’ , header=None) / 2**10
46

47 for i in scoredata.T:
48 row = scoredata.T[i ][1:]
49 score .append(row.max())
50

51 temp = np.mean(scoredata.T[0][1:])
52 for i in range(0, len(scoredata)) :
53 if score [ i ] > 0.5:
54 colors .append(1)
55 # if np.mean(scoredata.T[i ][1:]) >= temp * 1.3:
56 # colors .append(2)
57 # else:
58 # colors .append(1)
59 else :
60 colors .append(0)
61 temp = np.mean(scoredata.T[i][1:])
62

63 # ind = 2764
64 # specdata = np.loadtxt(config+filenames[3], skiprows=ind, max_rows=1)
65 # freqs = np.linspace(0, bandwidth, nchannels, endpoint=False) # MHz
66 # freqs = np.delete(freqs , len( freqs ) / 2)
67 # freqs = [x + 1200 for x in freqs ]
68 # # specdata = cd.scale_and_dBFS_specdata(specdata, acc_len, dBFS)
69 #
70 # plt.plot( freqs , specdata, c=cdict[colors [ind ]])
71 # plt.ylim ([0,1])
72 # plt.show()
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73

74

75 stats = stats.describe(specdata, axis=1)
76 stats = np.stack([stats [1][0], stats [1][1], stats [2], stats [3], stats [4], stats [5]], axis

↪→ =1)
77 scaled_stats = preprocessing.scale( stats , axis=0)
78

79 #PCA
80 pca = PCA()
81 pca. fit (scaled_stats)
82 pca_stats = pca.transform(scaled_stats)
83

84 # # #t-SNE
85 tsne = TSNE(learning_rate=50)
86 tsne_stats = tsne.fit_transform(scaled_stats)
87

88 #K-Means
89 km = KMeans(n_clusters=3, max_iter=3000)
90 km.fit(scaled_stats)
91 km_stats = km.predict(scaled_stats)
92

93 fig , ((ax1, ax2), (ax3, ax4))= plt.subplots(2,2)
94 fig .set_size_inches(18.5, 10.5, forward=True)
95 fig .set_tight_layout(’True’)
96 axes = [ax1, ax2, ax3, ax4]
97

98 for ax, xlabel , ylabel , title in zip(axes, xlabels , ylabels , titles ) :
99 ax.set_xlabel(xlabel)

100 ax.set_ylabel(ylabel)
101 ax. set_title ( title )
102

103 for i in np.unique(km.labels_):
104 ix = np.where(km.labels_ == i)
105 ax1.scatter (pca_stats[ix ,0], pca_stats[ix ,1], c=cdict[i ], s=20, picker=True)
106 ax3.scatter (tsne_stats[ ix , 0], tsne_stats[ ix , 1], c=cdict[i ], s=20, picker=True)
107

108 classindex_color = []
109 for i in np.unique(colors) :
110 ix = np.where(colors == i)
111 classindex_color.append(ix)
112 ax2.scatter (pca_stats[ix ,0], pca_stats[ix ,1], c=cdict[i ], label=ldict[ i ], s=20, picker

↪→ =True)
113 ax4.scatter (tsne_stats[ ix , 0], tsne_stats[ ix , 1], c=cdict[i ], label=ldict[ i ], s=20,

↪→ picker=True)
114

115

116 def onpick1(event):
117 ind = event.ind
118 xdata = event.artist .get_label()
119 print(ind, xdata)
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120 for i in range(len( ldict )) :
121 if xdata == ldict[i ]:
122 ind = classindex_color[i ][0][ ind]
123 if len(ind) == 1:
124 specdata = np.loadtxt(config+filenames[0], skiprows=ind, max_rows=1)
125 specdata2 = np.loadtxt(config + filenames [1], skiprows=ind, max_rows=1)
126 scoredata2 = np.loadtxt(config + filenames [3], skiprows=ind, max_rows=1)
127 freqs = np.linspace(0, bandwidth, nchannels, endpoint=False) # MHz
128 freqs = np.delete(freqs , len( freqs ) / 2)
129 freqs = [x + 1200 for x in freqs ]
130 specdata = cd.scale_and_dBFS_specdata(specdata, acc_len, dBFS)
131 specdata2 = cd.scale_and_dBFS_specdata(specdata2, acc_len, dBFS)
132 fig2 , axs = plt.subplots(3,1)
133 fig2 .set_tight_layout(’True’)
134 axs [0]. plot( freqs , specdata)
135 axs [1]. plot( freqs , specdata2)
136 axs [2]. plot( freqs , scoredata2)
137 titles = [’Main PSD’, ’Reference PSD’, ’Channel score’]
138 for ax, title in zip(axs, titles ) :
139 ax.set_xlim(1200, 1800)
140 ax.set_ylim(-dBFS - 2, 0)
141 ax.set_xlabel(’Frequency (MHz)’)
142 ax.set_ylabel(’Power (dBFS)’)
143 ax. set_title ( title )
144 ax.grid()
145 axs [2]. set_ylim(0,1)
146 ax.set_ylabel(’Score’)
147 plt .show()
148 fig .canvas.mpl_connect(’pick_event’, onpick1)
149 plt .grid()
150 plt .legend()
151 plt .show()
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Appendix C

ISE Design Suite Report

Release 14.7 par P.20131013 (lin64)
Copyright (c) 1995-2013 Xilinx, Inc. All rights reserved.

dondani-ub:: Fri Jun 25 04:36:01 2021

par -w -mt 4 system_map.ncd system.ncd system.pcf

Constraints file: system.pcf.
Loading device for application Rf_Device from file ’6vsx475t.nph’ in environment
/opt/Xilinx/14.7/ISE_DS/ISE/:/opt/Xilinx/14.7/ISE_DS/EDK.

"system" is an NCD, version 3.2, device xc6vsx475t, package ff1759, speed -1
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
INFO:Security:56 - Part ’xc6vsx475t’ is not a WebPack part.
WARNING:Security:42 - Your software subscription period has lapsed. Your current version of Xilinx tools will continue
to function, but you no longer qualify for Xilinx software updates or new releases.

----------------------------------------------------------------------

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius)
Initializing voltage to 0.950 Volts. (default - Range: 0.950 to 1.050 Volts)

Device speed data version: "PRODUCTION 1.17 2013-10-13".

Device Utilization Summary:

Slice Logic Utilization:
Number of Slice Registers: 84,515 out of 595,200 14%
Number used as Flip Flops: 84,509
Number used as Latches: 2
Number used as Latch-thrus: 0
Number used as AND/OR logics: 4

Number of Slice LUTs: 70,745 out of 297,600 23%
Number used as logic: 37,821 out of 297,600 12%
Number using O6 output only: 26,935
Number using O5 output only: 1,469
Number using O5 and O6: 9,417
Number used as ROM: 0

Number used as Memory: 16,096 out of 122,240 13%
Number used as Dual Port RAM: 712
Number using O6 output only: 24
Number using O5 output only: 2
Number using O5 and O6: 686

Number used as Single Port RAM: 0
Number used as Shift Register: 15,384
Number using O6 output only: 12,519
Number using O5 output only: 433
Number using O5 and O6: 2,432

Number used exclusively as route-thrus: 16,828
Number with same-slice register load: 5,664
Number with same-slice carry load: 11,164
Number with other load: 0

Slice Logic Distribution:
Number of occupied Slices: 23,973 out of 74,400 32%
Number of LUT Flip Flop pairs used: 85,262
Number with an unused Flip Flop: 18,141 out of 85,262 21%
Number with an unused LUT: 14,517 out of 85,262 17%
Number of fully used LUT-FF pairs: 52,604 out of 85,262 61%
Number of slice register sites lost
to control set restrictions: 0 out of 595,200 0%

A LUT Flip Flop pair for this architecture represents one LUT paired with
one Flip Flop within a slice. A control set is a unique combination of
clock, reset, set, and enable signals for a registered element.
The Slice Logic Distribution report is not meaningful if the design is
over-mapped for a non-slice resource or if Placement fails.
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OVERMAPPING of BRAM resources should be ignored if the design is
over-mapped for a non-BRAM resource or if placement fails.

IO Utilization:
Number of bonded IOBs: 146 out of 840 17%
Number of LOCed IOBs: 146 out of 146 100%
IOB Flip Flops: 98

Specific Feature Utilization:
Number of RAMB36E1/FIFO36E1s: 62 out of 1,064 5%
Number using RAMB36E1 only: 62
Number using FIFO36E1 only: 0

Number of RAMB18E1/FIFO18E1s: 174 out of 2,128 8%
Number using RAMB18E1 only: 174
Number using FIFO18E1 only: 0

Number of BUFG/BUFGCTRLs: 6 out of 32 18%
Number used as BUFGs: 6
Number used as BUFGCTRLs: 0

Number of ILOGICE1/ISERDESE1s: 96 out of 1,080 8%
Number used as ILOGICE1s: 64
Number used as ISERDESE1s: 32

Number of OLOGICE1/OSERDESE1s: 34 out of 1,080 3%
Number used as OLOGICE1s: 34
Number used as OSERDESE1s: 0

Number of BSCANs: 0 out of 4 0%
Number of BUFHCEs: 0 out of 216 0%
Number of BUFIODQSs: 0 out of 108 0%
Number of BUFRs: 1 out of 54 1%
Number of LOCed BUFRs: 1 out of 1 100%

Number of CAPTUREs: 0 out of 1 0%
Number of DSP48E1s: 388 out of 2,016 19%
Number of EFUSE_USRs: 0 out of 1 0%
Number of FRAME_ECCs: 0 out of 1 0%
Number of GTXE1s: 0 out of 36 0%
Number of IBUFDS_GTXE1s: 0 out of 18 0%
Number of ICAPs: 0 out of 2 0%
Number of IDELAYCTRLs: 2 out of 27 7%
Number of IODELAYE1s: 32 out of 1,080 2%
Number of MMCM_ADVs: 2 out of 18 11%
Number of PCIE_2_0s: 0 out of 2 0%
Number of STARTUPs: 1 out of 1 100%
Number of SYSMONs: 0 out of 1 0%
Number of TEMAC_SINGLEs: 0 out of 4 0%

Overall effort level (-ol): Standard
Router effort level (-rl): High

PAR will use up to 4 processors
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM14_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM15_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM16_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM13_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM8_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM17_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM18_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM19_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM5_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM20_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM6_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM7_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM4_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM9_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM22_RAMB_D1_DPO has no

load. PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM22_RAMC_D1_DPO has no

load. PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM22_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM3_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM21_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM12_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM10_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM11_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM1_RAMD_D1_O has no load.

PAR will not attempt to route this signal.
WARNING:Par:288 - The signal rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/FIFO/BU2/U0/grf.rf/mem/gdm.dm/Mram_RAM2_RAMD_D1_O has no load.
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PAR will not attempt to route this signal.
Starting Multi-threaded Router

Phase 1 : 444628 unrouted; REAL time: 1 mins 24 secs

Phase 2 : 264401 unrouted; REAL time: 1 mins 39 secs

Phase 3 : 79786 unrouted; REAL time: 2 mins 22 secs

Phase 4 : 79831 unrouted; (Setup:0, Hold:37850, Component Switching Limit:0) REAL time: 2 mins 43 secs

Updating file: system.ncd with current fully routed design.

Phase 5 : 0 unrouted; (Setup:0, Hold:32484, Component Switching Limit:0) REAL time: 3 mins 41 secs

Phase 6 : 0 unrouted; (Setup:0, Hold:32484, Component Switching Limit:0) REAL time: 3 mins 41 secs

Phase 7 : 0 unrouted; (Setup:0, Hold:32484, Component Switching Limit:0) REAL time: 3 mins 41 secs

Phase 8 : 0 unrouted; (Setup:0, Hold:32484, Component Switching Limit:0) REAL time: 3 mins 41 secs

Phase 9 : 0 unrouted; (Setup:0, Hold:0, Component Switching Limit:0) REAL time: 3 mins 45 secs

Phase 10 : 0 unrouted; (Setup:0, Hold:0, Component Switching Limit:0) REAL time: 4 mins 5 secs
Total REAL time to Router completion: 4 mins 5 secs
Total CPU time to Router completion (all processors): 5 mins 57 secs

Generating "PAR" statistics.

**************************
Generating Clock Report
**************************

+---------------------+--------------+------+------+------------+-------------+
| Clock Net | Resource |Locked|Fanout|Net Skew(ns)|Max Delay(ns)|
+---------------------+--------------+------+------+------------+-------------+
| adc0_clk | BUFGCTRL_X0Y3| No |20970 | 0.769 | 2.729 |
+---------------------+--------------+------+------+------------+-------------+
| adc0_psclk |BUFGCTRL_X0Y31| No | 1062 | 0.751 | 2.728 |
+---------------------+--------------+------+------+------------+-------------+
| sys_clk | BUFGCTRL_X0Y2| No | 4 | 0.005 | 2.264 |
+---------------------+--------------+------+------+------------+-------------+
| adc0_clk90 | BUFGCTRL_X0Y4| No | 32 | 0.148 | 2.350 |
+---------------------+--------------+------+------+------------+-------------+
|infrastructure_inst/ | | | | | |
| clk_200 | BUFGCTRL_X0Y0| No | 2 | 0.127 | 2.180 |
+---------------------+--------------+------+------+------------+-------------+
|MMCM_PHASE_CALIBRATI | | | | | |
|ON_ML_LUT2_444_ML_NE | | | | | |
| W_CLK | Local| | 2 | 0.000 | 0.472 |
+---------------------+--------------+------+------+------------+-------------+
|rfidet_div_asiaa_adc | | | | | |
|5g0/rfidet_div_asiaa | | | | | |
|_adc5g0/MMCM0_ML_NEW | | | | | |
| _I1 | Local| | 3 | 0.000 | 1.159 |
+---------------------+--------------+------+------+------------+-------------+
|MMCM_PHASE_CALIBRATI | | | | | |
|ON_ML_LUT2_436_ML_NE | | | | | |
| W_CLK | Local| | 3 | 0.409 | 0.755 |
+---------------------+--------------+------+------+------------+-------------+
|infrastructure_inst/ | | | | | |
|infrastructure_inst/ | | | | | |
|MMCM_BASE_sys_clk_ML | | | | | |
| _NEW_I1 | Local| | 3 | 0.000 | 2.551 |
+---------------------+--------------+------+------+------------+-------------+
|rfidet_div_asiaa_adc | | | | | |
|5g0/rfidet_div_asiaa | | | | | |
|_adc5g0/MMCM0_ML_NEW | | | | | |
| _OUT | Local| | 2 | 0.000 | 0.470 |
+---------------------+--------------+------+------+------------+-------------+
|infrastructure_inst/ | | | | | |
|infrastructure_inst/ | | | | | |
|MMCM_BASE_sys_clk_ML | | | | | |
| _NEW_OUT | Local| | 2 | 0.000 | 0.358 |
+---------------------+--------------+------+------+------------+-------------+

* Net Skew is the difference between the minimum and maximum routing
only delays for the net. Note this is different from Clock Skew which
is reported in TRCE timing report. Clock Skew is the difference between
the minimum and maximum path delays which includes logic delays.

* The fanout is the number of component pins not the individual BEL loads,
for example SLICE loads not FF loads.

Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0)

Number of Timing Constraints that were not applied: 6

Asterisk (*) preceding a constraint indicates it was not met.
This may be due to a setup or hold violation.

----------------------------------------------------------------------------------------------------------
Constraint | Check | Worst Case | Best Case | Timing | Timing

| | Slack | Achievable | Errors | Score
----------------------------------------------------------------------------------------------------------
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PERIOD analysis for net "rfidet_div_asiaa | SETUP | 0.007ns| 6.659ns| 0| 0
_adc5g0/rfidet_div_asiaa_adc5g0/mmcm_clko | HOLD | 0.002ns| | 0| 0
ut1" derived from PERIOD analysis for ne | | | | |
t "rfidet_div_asiaa_adc5g0/rfidet_div_asi | | | | |
aa_adc5g0/adc_clk_div" derived from NET " | | | | |
rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_ | | | | |
adc5g0/adc_clk" PERIOD = 3.3333 ns | | | | |
HIGH 50% | | | | |

----------------------------------------------------------------------------------------------------------
TS_epb_clk_in = PERIOD TIMEGRP "epb_clk_i | SETUP | 0.036ns| 14.889ns| 0| 0
n" 67 MHz HIGH 50% | HOLD | 0.058ns| | 0| 0

----------------------------------------------------------------------------------------------------------
TS_infrastructure_inst_infrastructure_ins | MINPERIOD | 0.239ns| 4.761ns| 0| 0
t_clk_200_mmcm = PERIOD TIMEGRP " | | | | |
infrastructure_inst_infrastructure_inst_c | | | | |
lk_200_mmcm" TS_sys_clk_n * 2 HIG | | | | |
H 50% | | | | |

----------------------------------------------------------------------------------------------------------
NET "rfidet_div_asiaa_adc5g0/rfidet_div_a | MINPERIOD | 1.667ns| 1.666ns| 0| 0
siaa_adc5g0/adc_clk" PERIOD = 3.3333 | | | | |

ns HIGH 50% | | | | |
----------------------------------------------------------------------------------------------------------
TS_sys_clk_n = PERIOD TIMEGRP "sys_clk_n" | MINLOWPULSE | 6.000ns| 4.000ns| 0| 0
100 MHz HIGH 50% | | | | |

----------------------------------------------------------------------------------------------------------
PERIOD analysis for net "rfidet_div_asiaa | MINLOWPULSE | 3.666ns| 3.000ns| 0| 0
_adc5g0/rfidet_div_asiaa_adc5g0/adc_clk_d | | | | |
iv" derived from NET "rfidet_div_asiaa_a | | | | |
dc5g0/rfidet_div_asiaa_adc5g0/adc_clk" PE | | | | |
RIOD = 3.3333 ns HIGH 50% | | | | |

----------------------------------------------------------------------------------------------------------
PERIOD analysis for net "rfidet_div_asiaa | MINPERIOD | 5.237ns| 1.429ns| 0| 0
_adc5g0/rfidet_div_asiaa_adc5g0/mmcm_clko | | | | |
ut2" derived from PERIOD analysis for ne | | | | |
t "rfidet_div_asiaa_adc5g0/rfidet_div_asi | | | | |
aa_adc5g0/adc_clk_div" derived from NET " | | | | |
rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_ | | | | |
adc5g0/adc_clk" PERIOD = 3.3333 ns | | | | |
HIGH 50% | | | | |

----------------------------------------------------------------------------------------------------------
TS_infrastructure_inst_infrastructure_ins | SETUP | 7.225ns| 2.775ns| 0| 0
t_sys_clk_mmcm = PERIOD TIMEGRP " | HOLD | 0.108ns| | 0| 0
infrastructure_inst_infrastructure_inst_s | | | | |
ys_clk_mmcm" TS_sys_clk_n HIGH 50 | | | | |
% | | | | |

----------------------------------------------------------------------------------------------------------
TS_sys_clk = PERIOD TIMEGRP "TNM_sys_clk" | MINHIGHPULSE| 9.168ns| 0.832ns| 0| 0
100 MHz HIGH 50% | | | | |

----------------------------------------------------------------------------------------------------------

Derived Constraint Report
Review Timing Report for more details on the following derived constraints.
To create a Timing Report, run "trce -v 12 -fastpaths -o design_timing_report design.ncd design.pcf"
or "Run Timing Analysis" from Timing Analyzer (timingan).
Derived Constraints for rfidet_div_asiaa_adc5g0/rfidet_div_asiaa_adc5g0/adc_clk
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+
| | Period | Actual Period | Timing Errors | Paths Analyzed |
| Constraint | Requirement |-------------+-------------|-------------+-------------|-------------+-------------|
| | | Direct | Derivative | Direct | Derivative | Direct | Derivative |
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+
|rfidet_div_asiaa_adc5g0/rfidet_| 3.333ns| 1.666ns| 3.329ns| 0| 0| 0| 2020847|
|div_asiaa_adc5g0/adc_clk | | | | | | | |
| rfidet_div_asiaa_adc5g0/rfidet| 6.667ns| 3.000ns| 6.659ns| 0| 0| 0| 2020847|
| _div_asiaa_adc5g0/adc_clk_div | | | | | | | |
| rfidet_div_asiaa_adc5g0/rfide| 6.667ns| 1.429ns| N/A| 0| 0| 0| 0|
| t_div_asiaa_adc5g0/mmcm_clkou| | | | | | | |
| t2 | | | | | | | |
| rfidet_div_asiaa_adc5g0/rfide| 6.667ns| 6.659ns| N/A| 0| 0| 2020847| 0|
| t_div_asiaa_adc5g0/mmcm_clkou| | | | | | | |
| t1 | | | | | | | |
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

Derived Constraints for TS_sys_clk_n
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+
| | Period | Actual Period | Timing Errors | Paths Analyzed |
| Constraint | Requirement |-------------+-------------|-------------+-------------|-------------+-------------|
| | | Direct | Derivative | Direct | Derivative | Direct | Derivative |
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+
|TS_sys_clk_n | 10.000ns| 4.000ns| 9.522ns| 0| 0| 0| 186|
| TS_infrastructure_inst_infrast| 10.000ns| 2.775ns| N/A| 0| 0| 186| 0|
| ructure_inst_sys_clk_mmcm | | | | | | | |
| TS_infrastructure_inst_infrast| 5.000ns| 4.761ns| N/A| 0| 0| 0| 0|
| ructure_inst_clk_200_mmcm | | | | | | | |
+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

All constraints were met.

Generating Pad Report.

All signals are completely routed.

WARNING:Par:283 - There are 24 loadless signals in this design. This design will cause Bitgen to issue DRC warnings.

Total REAL time to PAR completion: 4 mins 29 secs
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Total CPU time to PAR completion (all processors): 6 mins 22 secs

Peak Memory Usage: 3575 MB

Placer: Placement generated during map.
Routing: Completed - No errors found.
Timing: Completed - No errors found.

Number of error messages: 0
Number of warning messages: 26
Number of info messages: 0

Writing design to file system.ncd

PAR done!
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