
1

DESIGN AND CONSTRUCTION OF A DIGITAL SIDEBAND SEPARATING

SPECTROMETER FOR THE 1.2-METER SOUTHERN RADIO TELESCOPE

TESIS PARA OPTAR AL GRADO DE DOCTOR EN INGENIERÍA ELÉCTRICA

RICARDO ALBERTO FINGER CAMUS

PROFESOR GUÍA:

FAUSTO PATRICIO MENA MENA

MIEMBROS DE LA COMISIÓN:

LEONARDO BRONFMAN AGUILÓ

JAMES R. FISHER

MATTHEW A. MORGAN

Santiago de Chile, 2013.

Este trabajo ha sido parcialmente financiado por: CONICYT, a través de sus programas Fondo

Basal, proyecto PBF06, FONDEQUIP, Fondo Gemini N° 32100003 y Fondecyt Project No.

1121051. Agradecemos a Xilinx Inc. Por la donación de circuitos integrados y licencias de

software.

UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

2

3

Abstract

Dual sideband (2SB) receivers are well suited for the spectral observation of complex

astronomical signals over a wide frequency range. They are extensively used in radio astronomy,

their main advantages being to avoid spectral confusion and to diminish effective system

temperature by a factor two with respect to double sideband (DSB) receivers. Using available

millimeter-wave analog technology, wideband 2SB receivers generally obtain sideband rejections

ratios (SRR) of 10 to 15dB, insufficient for a number of astronomical applications.

In this work we present the architecture of typical astronomical dual sideband receivers and

describe the main causes limiting the performance of current analog technology. We elaborate on

the necessity of high sideband rejection for astronomical observations and propose a new

approach based on the use of digital technology to overcome the main problems limiting the

sideband rejection of current instruments.

During this work we studied digital technics to improve the performance of sideband separating

receivers. We report the design and implementation of a Field Programmable Gate Array (FPGA)

based sideband separating Fast Fourier Transform (FFT) spectrometer including the

implementation of a 4 GHz analog front end built to test the designs and measure sideband

rejection. The setup uses a 2SB front end architecture, except that the mixer outputs are directly

digitized before the IF hybrid, using two 8bits ADCs sampling at 1GSPS. The IF hybrid is

implemented on the FPGA together with a set of calibration vectors that, if properly chosen,

compensate for the analog front-end amplitude and phase imbalances. The calibrated receiver

exhibits a sideband rejection ratio in excess of 40 dB for the entire 2 GHz RF bandwidth, which

represent and improvement of a factor 100 to 1000 respect to current radio astronomy receivers.

4

5

Resumen

Los receptores de doble banda lateral (2SB) son particularmente útiles para la observación de

espectros astronómicos complejos en un amplio rango de frecuencias. Son extensamente

utilizados en radio astronomía siendo sus principales ventajas el evitar la confusión espectral y

disminuir la temperatura efectiva de sistema en un factor de dos con respecto a los receptores de

doble banda lateral (DSB). Usando la actual tecnología analógica, los receptores 2SB de banda

ancha obtienen generalmente cocientes de rechazo de banda lateral (SRR) de 10 a 15 dB, valores

insuficientes para algunas aplicaciones astronómicas.

En este trabajo se presenta la arquitectura típica de los receptores astronómicos de doble banda

lateral y se describen las principales causas que limitan el rendimiento de la tecnología analógica

actual. Se elabora sobre la necesidad de un alto rechazo de banda lateral para observaciones

astronómicas y se propone un nuevo enfoque usando tecnología digital para superar los

problemas que limitan el rechazo de banda lateral de los instrumentos actuales.

Durante este trabajo se estudiaron técnicas digitales para mejorar el rendimiento de los receptores

con separación de banda lateral. Se presenta el diseño e implementación de un espectrómetro de

transformada de Fourier rápida (FFT) con separación de banda lateral digital incluyendo la

implementación de un receptor analógico de 4 GHz construido para probar los diseños y medir el

rechazo de banda lateral. La configuración utiliza una arquitectura clásica de receptor 2SB,

excepto que las salidas de los mezcladores son directamente digitalizadas, antes del híbrido de IF,

utilizando dos ADCs de 8 bits a 1 GSPS. El híbrido de IF está implementado en la FPGA junto

con un conjunto de vectores de calibración que, debidamente elegidos, compensan los

desequilibrios de amplitud y fase del receptor analógico. El receptor calibrado exhibe un cociente

de rechazo banda lateral superior a 40 dB para todo el ancho de banda de recepción de 2 GHz.

Esto representa una mejora de un factor de 100 a 1000 respecto a los actuales receptores radio

astronómicos.

6

7

We remember professor Jorge May (R.I.P.) for his support to this project. I would
also like to thank the complete team at the Millimeter Wave Laboratory for their

invaluable trust and support.

8

9

Contents

Abstract .. 3

Resumen .. 5

Table of Figures ... 10

1. Introduction ... 12

1.1. General concepts ... 12
1.2. The State of the Art ... 15
1.3. On the necessity of high sideband rejection ratio ... 17

1.3.1. Noise reduction .. 17
1.3.2. Observation efficiency ... 17

1.3.3. Determine complex sources .. 17

1.3.4. Reduction of radio frequency interference (RFI) .. 17

2. A new approach ... 18

3. Spectrometer Design.. 20

3.1. Hardware ... 20

3.1.1. Front End ... 20
3.1.2. Back End ... 21

3.2. Gateware ... 24
3.3. Software .. 28

4. Implementation .. 29

4.1. Test setup .. 29

4.2. Calibration .. 30

4.3. Results ... 32
4.3.1. Sideband Rejection Measurements ... 32

4.3.2. Thermal stability measurements.. 36

4.3.3. Preliminary results on a millimeter-wave front end .. 38

5. Future work and astronomical testing ... 42

6. Conclusion ... 43

Appendix A: Python Scripts .. 44

Calibration_readout.py .. 44

SRR_measurement.py ... 50

Appendix B: List of Publications .. 58

Articles .. 58
Conferences ... 58

Bibliography .. 59

10

Table of Figures

Figure 1: Basic block diagram of a DSB receiver.. ... 12

Figure 2: Sideband overlapping on a DSB receiver. ... 13

Figure 3: Basic Sideband Separation Mixer (SSM) configuration. ... 13

Figure 4: Representation of an Ideal Quadrature Hybrid Model. .. 14

Figure 5: Sideband Rejection Ratio for different phase and amplitude imbalances. 16

Figure 6: Sideband rejection ratio of an ALMA band 3 cryogenic receiver. 16

Figure 7: Morgan and Fisher Digital Sideband Separating Mixer (DSSM). 19

Figure 8: Sideband isolation measured in the lab at (a) 28°C (b) 40°C. 19

Figure 9: Digital Sideband Separating Receiver Block Diagram. ... 20

Figure 10: Front end analog plate. ... 21

Figure 11: ROACH block diagram. ... 22

Figure 12: ROACH Board in a typical configuration.. 23

Figure 13: Internal block diagram of the National Instrument ADC083000 chip. 24

Figure 14: High level block diagram of the digital sideband separating spectrometer. 25

Figure 15: Finite impulse response filter bloc diagram. ... 26

Figure 16: 4
th

 order finite impulse response filter implementation. .. 26

Figure 17: Comparison of the single-bin frequency response of a 4
th

 order PFB with a direct FFT.

 ... 27

Figure 18: Vector complex multiplier (VCM) block diagram. ... 28

Figure 19: Test setup block diagram. .. 29

Figure 20: Measuring setup bench. ... 30

Figure 21: Calibration spectrometer for the measurement of the amplitude and phase imbalance

of the analog front end and ADCs. .. 31

Figure 22: Uncalibrated LSB and USB spectra for a 2.6GHz test tone. 32

Figure 23: Uncalibrated sideband rejection ratio for a LO of 2.5 GHz and a RF frequency from 2

to 3 GHz. ... 33

Figure 24: Measured USB and LSB amplitude ratio X (left) and phase differences øLSB/USB (right).

RF input from 2 to 3GHz, LO=2.5GHz .. 33

Figure 25: Measured øLO (solid line) and øIF (dashed line) contribution to the total phase

difference. .. 34

Figure 26: Sideband Rejection Ratio after calibration of all spectral channels. 35

Figure 27: Two LO´s Sideband Rejection Ratio. .. 35

Figure 28: Two LO´s calibration curves.. 36

11

Figure 29: Sideband Rejection Ratio measured at 40±1C with calibration performed at 31±1C.. 37

Figure 30: Sideband Rejection Ratio measured at 31±1°C for 3 thermal cycles. 37

Figure 31: 3mm front end used for the experiment. .. 38

Figure 32: Sideband Rejection Ratio at 201 points after calibration for 64 points. 39

Figure 33: LSB and USB spectra.. .. 40

Figure 34: 201 points Sideband Rejection Ratio after 64 points calibration. 41

12

1. Introduction

1.1. General concepts

Most receivers used in radio astronomy are similar to those used in telecommunication. They are

called heterodyne or coherent receivers. The main feature of these receivers is that they convert

the incoming signal to a lower frequency range conserving the phase and amplitude information

of the original. This low frequency signal, known as Intermediate Frequency (IF), is processed by

the back-end electronics to extract the information needed for a particular observation.

Nevertheless the principle of operation of a radio astronomy and telecommunication receiver is

the same, the former has normally better performance in terms of bandwidth and noise. The

simplest configuration of a double side band (DSB) receiver is shown in Figure 1.

Figure 1: Basic block diagram of a DSB receiver. For high frequency receivers SIS mixers are preferred as a

front end.

In all heterodyne receivers a nonlinear device, called a mixer, processes the incoming signal and

a reference signal known as the Local Oscillator (LO). As a result of the nonlinearity, mixing

products are generated that can be harmonics or inter-modulation products. A low pass filter

normally selects the signal that has a frequency equal to the difference in frequency between LO

and RF, a process called downconversion.

The main problem with this strategy is that frequencies above the LO (upper sideband or USB)

and below the LO (lower sideband or LSB) are downconverted to the same IF frequency as

pictured in Figure 2. (Thompson, 1986)

Mixer

IF Output

LO

Horn Antena IF Amplifier

13

Figure 2: Sideband overlapping on a DSB receiver. In this example the LO frequency fLO is at the center of

the RF spectrum of bandwidth B. After downconversion the USB and LSB are overlapped at the IF.

One approach to overcome the sideband overlapping is to filter one sideband before injecting the

signal into the mixer. This kind of receiver is called a single sideband receiver (SSB). SSB

receivers are practical when the LO is fixed or when the IF band is away from zero and the RF

bandwidth is comparable with the IF bandwidth, like ALMA Band 1 (Reyes, 2013). Even though

for some applications SSB receivers are suitable, they are not practical for most high frequency,

tunable, wide bandwidth applications. For example ALMA bands 3 to 10 use either sideband

separating mixers or double side band mixers (ALMA, 2013).

Sideband Separating Mixers (SSM) are designed to overcome this problem separating the USB

and LSB in two different outputs. Figure 3 shows the classical configuration of a dual sideband

separating mixer. This configuration includes two mixers and two quadrature hybrids at the RF

and IF bands.

Figure 3: Basic Sideband Separation Mixer (SSM) configuration.

A Quadrature Hybrid is four-port device that produces two outputs by phase shifting and adding

the two inputs. There are many physical realizations of this device depending mainly on the

frequency of operation. These realizations go from pure geometrical waveguide or microstrip

designs to fully-electronic OP-AMP based designs. The realization of any quadrature hybrid can

fLO

LSB USBIF

BB/2

Downconversion

RF

LO

50Ω

0

90

0

90

RF Quadrature

Hybrid
IF Quadrature

Hybrid

M1

M2

I1

I2

14

be described by the model shown in Figure 4. This model is a good representation of the actual

behavior of hybrids only for small bandwidths. Far away from the central design frequency all

hybrids deviate from quadrature (90° shift) and begin to show amplitude imbalances.

Figure 4: Representation of an Ideal Quadrature Hybrid Model.

Referring back to Figure 3, in a 2SB receiver the RF hybrid outputs are downconverted by the

mixers M1 and M2, which are driven by the same LO, and further recombined by the IF hybrid

producing the outputs I1, I2. It is easy to show (Bert C. Henderson, 1985) that the outputs I1, I2

are the USB and LSB components of the incoming RF signal. Actual SSMs mixers include other

elements like amplifiers, isolators and filters in addition to the components shown in Figure 3.

However, current analog technology is limited in the degree to which it can separate the two

sidebands.

The Sideband (or “Image”) Rejection Ratio (SRR) is one of the most important figures of merit

of a sideband separating mixers, either single sideband (SSB) or dual side band (2SB) mixers. It

is defined as the power ratio of the wanted sideband to the unwanted (rejected) sideband on each

IF output. Ideally, the SRR should be infinite for all frequencies on both outputs of a 2SB mixer.

In practice, unavoidable gain and phase imbalances strongly limit the achievable sideband

rejection ratio to about 10-20 dB for purely high sensitivity, broadband receivers. The difficulty

of getting a high separation ratio is due to the challenge of producing two parallel RF/IF channels

(including an RF hybrid, mixers, amplifiers, filters, and IF hybrid) with excellent amplitude and

phase balance over broad bandwidths. We present here the design and implementation of a digital

sideband separating spectrometer which makes use of the latest advancements in digital

technology to improve the performance of sideband separating receivers.

0

90

Quadrature Hybrid
B

+

+

15

1.2. The State of the Art

Much effort has been invested during the last decades to improve the sensitivity of radio

telescopes. Cryogenic heterodyne receivers are quickly approaching fundamental limits to their

noise temperature, but they are showing a relatively modest performance in other figures like

Sideband Rejection Ratio.

To estimate the sideband rejection ratio we have to take into account the amplitude imbalance, A,

equal to the sum of the individual imbalanced in the RF and IF path as well as the value, θ,

defined as the total phase imbalance due to the quadrature deviations on the hybrids and any

other imbalance in the electrical length of both signal paths. In (Bert C. Henderson, 1985) it is

shown that when A and θ are included in the 2SB mixer model we can calculate the Image

Rejection (SRR) as follow:

Note that for A=0 dB and θ=0° SRR becomes (+) infinite which is the ideal case. The amplitude

imbalances are not only produced by asymmetries within hybrids and mixers but also due to

impedance mismatches between the different components in the system, including amplifiers,

isolators and filters before the IF hybrid. Figure 5 shows how the sideband rejection ratio

decreases when amplitude and phase imbalances are present.

In Figure 5 it is easy to see how difficult it is to get sideband rejection ratios above 20 dB. To

achieve this goal it is necessary to build two RF paths with an amplitude imbalance less than

1.5dB and a phase imbalance less than 5 degrees over the entire receiver bandwidth.

SBRSRR

16

Figure 5: Sideband Rejection Ratio for different phase and amplitude imbalances. From (Bert C. Henderson,

1985).

The Atacama Large Millimeter/submillimeter Array (ALMA) specification for its state-of-the-art

receivers requires an SRR better than 7dB over the entire band and better than 10dB over the

90% of the band (Cunningham et al. 2007). What seems to be a moderate number proved to be

difficult to achieve, particularly at the higher frequencies (F. P. Mena, 2011) (Mahieu, 2011).

Figure 6 shows the typical performance of an ALMA band-3 receiver (Ma, 2011), which covers a

similar frequency range as the southern mm-wave radio telescope.

Figure 6: Sideband rejection ratio of an ALMA band 3 cryogenic receiver. The red and yellow lines represent

the ALMA specifications for 90% and 100% of the band, respectively. Blue line is USB and violet line is LSB.

From (Ma, 2011).

17

1.3. On the necessity of high sideband rejection ratio

The overlap of the upper and lower sideband spectra complicate observations in a number of

ways. Some important issues are described below.

1.3.1. Noise reduction

In all radio telescopes the signal collected by the antenna is a sum of the astronomical signal and

noise coming from several sources such as microwave background, atmospheric emission,

antenna spillover and optics (lenses and filters). A low sideband rejection ratio makes the noise of

both sidebands to be present in the IF output, therefore increasing the system noise temperature.

When the atmospheric emission is high or when the noise contribution from the optics is intense,

a high sideband rejection ratio becomes particularly important. Good sideband rejection also

allows better calibration of atmospheric emission in single dish observation. (Lucas, 2000)

(D'Addario, 2000)

1.3.2. Observation efficiency

A technique to cope with low sideband rejection instruments makes use of the fact that the

frequency of the signals coming from USB and LSB shifts in opposite directions within the IF

band when the LO is displaced. To use this technique at least two observations of the same

source with different LO settings are necessary. This produces a reduction of observation

efficiency by at least a factor of 1/2 that is critical when observing very faint sources. (Vilaro,

2011)

1.3.3. Determine complex sources

When the radio source is too complex, i.e. made of many spectral lines, broad lines, present at

both sidebands, it can be difficult to untangle in the IF spectrum even when multiple observations

with different LOs are available. In this case a high sideband rejection receiver is essential.

(Mangum, 1998)

1.3.4. Reduction of radio frequency interference (RFI)

With the extensive use of the electromagnetic spectrum for telecommunications and

radar/positioning systems it has become frequent to make astronomical observations close to

satellite or ground-based commercial bands. This is particularly true for relatively low frequency

radio telescopes like the SKA (R.P. Millenaar, 2011). The received power from man-made

transmissions is normally many orders of magnitude above astronomical sources. If these

transmissions are present in the image band for an astronomical observation, a high sideband

rejection will be critical. For example, in the band of our interest there are radar applications at

94GHz (Heymsfield, 2008) (A. Surkov, 2006), and even applications above 100GHz have been

proposed (Wallace, 2010).

18

2. A new approach

The increasing power of digital processing hardware has opened the door for a new approach

which is based on the idea of performing the IF recombination (IF hybrid, Figure 3) in digital

signal processing. This method allows correction of the imbalances of the analog components

with digital processes.

In fact, a receiver with digital sideband separation was reported on 2009 (Axel Murk, 2009). For

the back end of this receiver they made use of a commercially available digital signal analyzer

(AC240 from Acqiris/Agilent) capable of digitizing 2×500MHz of bandwidth, and an on-board

Field Programmable Gate Array for high resolution and broadband signal processing in real-time.

With this digital back end they were able to digitize the mixers outputs of a 340 GHz front end

and build (in digital) an ideal IF hybrid for sideband separation. They reported image rejections

between 10 and 25 dB, which are at the high end of current analog separating technology. Even

though they did not use the digital back end to correct for imbalances in the RF front end, they

clearly showed the applicability of FPGA based platforms to do signal processes normally

performed by analog hardware.

Another interesting example of digital processing is the conversion from linear to circular

polarization using FPGA (Koyel Das, 2011). In this work a 512 MHz bandwidth was processed

by a logic simulator to form circular polarization by quadrature phase shifting and summing the

equalized linear polarization signals. Polarization purity of -25 dB was obtained. Even though the

technique was demonstrated using a logic simulator, the implementation on a real FPGA is

relatively straightforward. The authors consider that the trend in next-generation receivers for

radio astronomy is to move the samplers as close as possible to the front end. (Koyel Das, 2011)

A prototype proving calibrated sideband separation has been recently (2010) constructed by M.A.

Morgan and J.R. Fisher at NRAO. In their design, Morgan and Fisher processed 250 MHz of

bandwidth downconverted from L-Band (1.2-1.7GHz) with a sideband rejection ratio better than

50dB over the entire band. This represents an outstanding sideband separation 20 to 30 dB better

than current analog technology (Morgan and Fisher, 2010).

The method consists of digitizing the mixer outputs to then calculate the Fourier transform. After

the Fourier transform is calculated, each frequency channel (from both mixers) is duplicated and

multiplied by a complex constants Ci, i=1,...,4. Figure 7 shows the architecture of Morgan and

Fisher’s Digital Sideband Separating Mixer (DSSM) (Fisher and Morgan, 2008).

C1 to C4 represent 1-dimesional complex arrays, of a length equal to the number of channels of

the FFT. When C1 to C4 are chosen carefully one can not only reproduce digitally the behavior of

an ideal IF hybrid but calibrate out the accumulated imbalances of both signal branches for each

frequency channel. It has been shown that this scheme dramatically increases the sideband

rejection ratio of sideband separating receivers (Morgan and Fisher, 2010).

19

Figure 7: Morgan and Fisher Digital Sideband Separating Mixer (DSSM). From (J. R. Fisher, 2008).

Figure 8 shows the sideband rejection achieved by M.A. Morgan and J.R. Fisher after calibration

was performed. Figure 8(a) shows the image rejection when the receiver was at the same

temperature at which the calibration was performed (28°C). Figure 8 shows the sideband

rejection when the temperature of the receiver was increased up to 40°C. Even though the digital

processing performed in this experiment was off-line on a desktop computer, it does show the

possibility of increasing the sideband rejection ratio of current receivers by 20 to 30dB. It also

shows that the calibration is stable enough under temperature variations.

Figure 8: Sideband isolation measured in the lab at (a) 28°C (b) 40°C. Points below the noise of the test set

were conservatively marked at -60dB as an upper bound. Calibration was performed at 28°C. From (Fisher

and Morgan, 2008).

20

3. Spectrometer Design

3.1. Hardware

Figure 9 shows the block diagram of the sideband separating spectrometer that is the subject of

this thesis.

Figure 9: Digital Sideband Separating Receiver Block Diagram. The front end was built out of commercial

parts to provide the functionality of typical analog receivers. The boundary between front end and back end is

defined at the ADCs inputs in the ROACH assembly.

3.1.1. Front End

A 4 GHz analog front end was built out of commercial parts to provide the functionality of

typical analog receivers. Following the 90° RF hybrid two mixers down-convert the input signal

using a 2.2 to 3.2 GHz LO. Figure 10 shows a picture of the analog plate.

5 cm

RF Hybrid

Filter Amplifier

LO Splitter

Mixer

Heater

21

Figure 10: Front end analog plate. From left to right the RF input filter, RF quadrature hybrid, two semi-

rigid cables leading to the mixers, anti-aliasing filters and amplifiers can be seen. In the center of the picture

the LO input filter and LO splitter are seen. The filters are used to attenuate harmonics coming from the

synthesizers. The gold corrugated components on the upper left and lower right sides are the heaters.

3.1.2. Back End

After amplification and anti-aliasing filtering the outputs are digitized to 8 bits, at 1 GSPS,

allowing the processing of a 500 MHz IF bandwidth per sideband. Even though the RF frequency

of this prototype is relatively low, there is nothing preventing the design to operate at higher RF

frequencies provided a suitable front end.

Our design closely resembles the prototype of Morgan and Fisher but includes a power block and

a 64bit accumulator to integrate the high data rate output within the FPGA. A simpler filtering

scheme and in-phase LO injection were used in our front end. The complex constants C1 and C4

were set to 1, while C2 and C3 where adjusted to calibrate the phase and amplitude imbalances.

C2 and C3 as well as the accumulation length are accessible to the user and can be modified from

the control computer.

The hardware used to perform the signal processing is known as the Reconfigurable Open

Architecture Computing Hardware (ROACH)
1
. The ROACH is an open FPGA-based (Xilinx

Virtex 5) platform, the product of an international collaboration lead by the Center for Astronomy

Signal Processing and Electronic Research (CASPER) in University of California at Berkeley.

CASPER aims to produce open hardware designs and software/gateware resources for signal

processing in astronomy
2
.

Figure 11 shows the block diagram of the ROACH board. The centrepiece of the ROACH is a

Xilinx Virtex 5 FPGA (either LX110T for logic-intensive applications, or SX95T for DSP-slice-

intensive applications). A separate PowerPC chip runs Linux and is used to control the board, i.e.,

program the FPGA and allow interfacing between the FPGA software registers/BRAMs/FIFOs

and external devices using Ethernet. The high performance Virtex-5 FPGA in which the ROACH

is based can be programmed to perform very demanding parallel data processing algorithms

usually found in radio astronomy.

Two quad data rate (QDR) SRAMs provide high-speed, medium-capacity memory, and one

DDR2 DIMM provides slower-speed, high-capacity buffer memory for the FPGA. The PowerPC

has an independent DDR2 DIMM to run the processes and the especially designed Linux

distribution called "Berkeley Operating system for ReProgrammable Hardware" (BORPH)
3
.

BORPH is an Operating System designed for FPGA-based reconfigurable computers. It is an

extended version of the Linux kernel that handles FPGAs as if they were CPUs. BORPH

introduces the concept of a 'hardware process', which is a hardware design that runs on an FPGA

but behaves just like a normal user program. The BORPH kernel provides standard system

1
 http://casper.berkeley.edu/wiki/ROACH

2
 https://casper.berkeley.edu/

3
 http://bee2.eecs.berkeley.edu/wiki/Bee2OperatingSystem.html

22

services, such as file system access to hardware processes, allowing them to communicate with

the rest of the system easily and systematically
4
.

The two Z-DOK connectors allow ADCs, DACs and other interface cards to be attached to the

FPGA. Four CX4 connectors provide a total of 40 Gbits/sec bandwidth for connecting ROACH

boards together, or connecting them to other XAUI/10GbE-capable devices (such as computers

with 10 GbE NICs and 10 GbE switches).

Figure 11: ROACH block diagram
1
. See the text for description.

The reason for choosing this platform is based on the flexibility of the design, the availability of

documentation and the experience of use in astronomical data reduction. Leading institutions in

radio astronomy like the National Radio Astronomy Observatory (NRAO) are collaborating with

the design and development of this open hardware. Figure 12 shows a picture of the roach board

in a typical configuration with two Analog to Digital Converters (ADCs) plugged into the Z-

4
 https://casper.berkeley.edu/wiki/BORPH

23

DOK ports. The ROACH platform allows the interconnection of multiple boards if it is necessary

to grow in number of channels or computing power. A wiki page and mail list provides insights

in other projects and experiences with the hardware, representing a rich source of information to

plan, discuss and troubleshoot particular designs.

Figure 12: ROACH Board in a typical configuration.

The ADC board is based on the National Semiconductor ADC083000 chip
5
 which is built using

two interleaved 1.5 GSPS ADC cores driven by the rising and falling edge of the input clock.

Figure 13 shows its internal configuration. The reference voltage (Vref in Figure 13) provided to

each core as well as the gain of the input differential amplifiers (S/H in Figure 13) set the zero

response of the ADC083000 chip. Even very small differences in these reference voltages/gains

will appear -after interleaving- as a high frequency “ghost” periodic wave. This coherent tone

falls above the first Nyquist zone and is, therefore, aliased down to the detected spectra. This and

other spurious signal limits the spurious-free dynamic range to 50 dBc, when the ADC is driven

at full scale, i.e. a test tone of 0 dBm. The maximum clock rate is 1.5 GHz, input sine wave. The

clock is divided down by 4 before going into the FPGA. Consequently, the data is also demuxed

by 4, resulting in 8 simultaneous samples.

5
 http://www.national.com/pf/DC/ADC083000.html#Overview

24

Figure 13: Internal block diagram of the National Instrument ADC083000 chip.

3.2. Gateware

Gateware is the representation of the data processing algorithm that runs on the FPGA.

Programing an FPGA implies building hardware through selecting a particular interconnection of

the hardware resources (e.g. logic gates, Digital Signal Processor (DSP) slices or memories). In

contrast with normal computers that can only perform a small number of operations

simultaneously, a FPGA can perform highly parallel processes including many operations on

each clock cycle.

Figure 14 shows the high level design of the sideband separating spectrometer. Our design is

based on the spectrometer example of CASPER tutorial 3, but includes a number of

modifications.

The leftmost yellow block (adc083000x2) represents the two ADCs which are connected to two

parallel spectrometers. The core element of each spectrometer is the Polyphase Filter Bank (PFB)

block, which is made out of a Finite Impulse Response (FIR) filter followed by a pipeline Fast

Fourier Transform (FFT), both symbolized by the green blocks on the model. The pipeline FFT is

an algorithm which can compute the FFT in a sequential manner. It achieves real-time behavior

with nonstop processing when data is continually fed through the processor (Bin Zhou, 2009).

Vector Complex Multipliers (VCM, blue blocks) were designed and incorporated before the

power blocks. The VCM together with the DSP-based complex adders (a_add_dsp, white blocks)

multiplies and adds the signal from both branches. A DSP-based power block (power_dsp_48e,

in green) was used after combining the signals followed by a gain-requantization block mainly

used for amplitude control and data type converting. Vectors Accumulators (VACC) integrate the

power spectrum.

25

Figure 14: High level block diagram of the digital sideband separating spectrometer.

Analog to digital
converters (ADCs) Polyphase Filter bank (PFB)

Complex multipliers and
adders

Signal
power

calculation

Gain and
requantization Integration and

storage

26

To prevent overflow and ease the need for requantization the vector accumulator depth was set to

64bit, and also 64bit Block Random Access Memories (BRAM) were used to store the data.

A FIR filter is a type of filter whose response to a finite input has a finite duration, i.e. the output

y[n] settles to zero in finite time after the input x[n] is set to zero. A FIR filter output y[n], is the

weighted sum of the current and past inputs, x[n]
6
. The FIR generic block diagram is shown in

Figure 15.

Figure 15: Finite impulse response filter bloc diagram.
7

The order of the filter is the number of time samples that are used to calculate the output. A 4
th

order filter was used in our design. Figure 16 shows a zoom into the FPGA implementation.

Figure 16: 4
th

 order finite impulse response filter implementation.

6
 Cambridge University web site: http://svr-www.eng.cam.ac.uk/~ajr/SA95/node13.html

7
 Figure taken from http://en.wikipedia.org/wiki/Finite_impulse_response

12

12

4-taps (data shift and
multiplication)

Adder trees

Adder tree internal structure

27

The addition of the FIR before the FFT improves the frequency response of each channel making

them flatter within each frequency bin, sharper on the edges, and strongly reducing the inter-

channel leaking. Figure 17 shows a comparison of the single-bin frequency response of a PFB

with a direct FFT.
8

Figure 17: Comparison of the single-bin frequency response of a 4
th

 order PFB with a direct FFT.
8

The PFB built for the sideband separating spectrometer has 2048 channels with a data and

coefficients bitwidth of 18 bits. Running at 1 GSPS, the resulting spectral resolution is 244 kHz,

which is good for the observation of extended molecular clouds planned for the 1.2m mm-wave

telescope. The coefficient and data bitwidth defines the level of numeric noise added by the PFB

to the original signal. With 18bits the PFB noise floor is below -60 dBc when a full scale test tone

is applied to the ADC input. The ADC spurious free dynamic range is 50 dBc, so the dynamic

range of the spectrometer is limited by the ADC performance and not by the PFB noise.

The vector complex multipliers were designed to be based on a pair of BRAM memories for the

real and imaginary coefficients and a complex DSP-based multiplier. The block diagram of the

VCM is shown in Figure 18.

8
 https://casper.berkeley.edu/wiki/The_Polyphase_Filter_Bank_Technique

28

Figure 18: Vector complex multiplier (VCM) block diagram.

The model of Figure 14 could be compiled for an ADC clock speed of up to 500MHz (1GSPS) or

a FPGA clock speed of up to 125MHZ so the speed limitation came first from the FPGA

maximum clock speed that ensures the correct propagation of the signals within the FPGA fabric.

Further optimization on the placing of the FPGA resources may increase the maximum

bandwidth.

3.3. Software

A number of python scripts were written to set and read the data from the ROACH. Special

programs were designed to perform the calibration which also required the control of the RF and

LO frequency synthesizer. The calibration and SRR measurement codes are included in the

annex.

Data type adjusting
Memory address

counter

Real and imaginary
BRAM memories

Complex
multiplier

Complex
packaging

29

4. Implementation

4.1. Test setup
Figure 19 shows the measuring test setup block diagram. Two signal synthesizers were used as

LO and RF sources. A noise source was used to provide a white noise floor, which was coupled

to the test tone to improve the ADC performance as described by (Morgan and Fisher, 2010), and

to emulate a typical radio astronomical application. The analog plate (Figure 10) has two heaters

to increase its temperature so the calibration thermal stability can be measured. No particular care

was taken to match cable length or to choose matched-pairs of mixers, amplifiers or any other

component. Both LO and RF synthesizers, as well as the clock generator for the ADCs and

ROACH are locked to the same 10MHz reference, although this is not required for sideband

separation.

Figure 19: Test setup block diagram. Both LO and RF synthesizers, as well as the clock generator for the

ADCs and ROACH are locked to the same 10 MHz reference. A LAN is used to control the instrument and

download the spectra.

Analog
Front End

~
RF

Combiner

Noise
Source

RF: 1.7-3.7 GHz

LAN

Digital
Back End
(ROACH)

I

Q

I

Q

~LO : 2.2-3.2 GHz

500 MHz

10 MHz Ref. 10 MHz Ref.

30

Figure 20: Measuring setup bench. From left to right the noise source and RF combiner can be seen. At the

center the front end plate and ROACH assembly are depicted. Computers are not shown.

4.2. Calibration
A second spectrometer was designed to run on the same setup which, instead of accumulating the

sideband-separated power spectrum, records the amplitude and phase of 1024 spectral channels

(even-numbered channels). Figure 21 shows the model of this calibration spectrometer. The

mentioned design directly stores the PFB complex outputs for further analysis on a desktop

computer. A test tone is used to measure the relative amplitude and phase of the two analog

branches for the 1024 channels. The measurement takes about 40 minutes to be completed. With

the collected data the calibration constants C1-C4 are calculated in the following way: C1 and C4

are set to 1+0j while C2 and C3 are determined using the formulas:

and,

 () (1)

 () (2)

where X is the amplitude ratio of the two IF branches and øLSB/USB are the differential phase at the

ADC input measured on each sideband (M.A. Morgan & J.R. Fisher, 2010). The calibration

coefficients for the odd-numbered channels are calculated by linear interpolation of the even-

numbered channels (i.e., the measured data). Finally C1 to C4 are written into the FPGA, a

process that takes less than a minute.

FE analog
plate

ROACH Board

Noise Source

RF and LO sources

31

Figure 21: Calibration spectrometer for the measurement of the amplitude and phase imbalance of the analog front end and ADCs.

Analog to digital
converters (ADCs) Polyphase Filter bank (PFB) Real and

Imaginary
extraction

Gain and
requantization Storage

32

4.3. Results

4.3.1. Sideband Rejection Measurements

Figure 22 shows the USB and LSB spectra when a full scale (0dBm at the ADC input) test tone is

applied on the USB (RF=2.6GHz, LO=2.5GHz). For this example an ideal (uncalibrated) digital

hybrid was implemented (C1=C4=1+0j, C2=C3 =0+1j). Spurious signals generated mostly by the

ADC are seen around -50dBc limiting the dynamic range of the setup to about 50 dB. The

sideband rejection in this example exceeds 20 dB.

Figure 22: Uncalibrated LSB and USB spectra for a 2.6GHz test tone. LO was set to 2.5GHz. Spurious signals

generated in the ADC can be seen at -50dBc on the pass band (USB). The sideband rejection in the example

exceeds 20dB.

Figure 23 shows the uncalibrated sideband rejection ratio for a LO of 2.5 GHz and RF

frequencies from 2 to 3 GHz. 512 points were measured. Even implementing a perfect IF hybrid

the sideband rejection does not exceed 30dB, and averages about 20dB.

33

Figure 23: Uncalibrated sideband rejection ratio for a LO of 2.5 GHz and a RF frequency from 2 to 3 GHz.

After calibration, the sideband rejection ratio is measured for every spectral channel by direct

calculation of the amplitude ratio of the test tone in both sidebands. This approach can be used

since the amplitude imbalance of both signal branches has been equalized, so no additional

correction to the direct SRR measurement is needed. Variation of the RF test tone amplitude

across the band is also not critical for the accuracy of the SRR measurement although it might

degrade the spurious free dynamic range of the spectrometer if the ADCs are driven into

saturation or far below its optimal (full scale, 0dBm) amplitude level.

Figure 24 shows the amplitude and phase imbalances of the LSB and USB (LO is set at 2.5GHz).

The data shown were taken at 31±1 °C and are used to calculate the constants C2 and C3.

Figure 24: Measured USB and LSB amplitude ratio X (left) and phase differences øLSB/USB (right). RF input

from 2 to 3GHz, LO=2.5GHz

LSB

USB

LSB USB

34

Based on the data shown Figure 24 right, it is possible to calculate the phase unbalance

contribution of the LO/RF and IF part independently. The calculation is performed using the

expressions (J.R. Fisher & M.A. Morgan, 2008):

 (3)

 (4)

where øLO represents the phase unbalance at the ADC input due to the RF and LO components,

and øIF the signal path mismatch after the mixers. The values are shown in Figure 25. Important

unbalances are noticed in both øLO and øIF. The result is expected since the IF bandwidth is

comparable to the RF maximum bandwidth, so the measurement spanned a substantial portion of

the design bandwidth of both RF and IF components.

Figure 25: Measured øLO (solid line) and øIF (dashed line) contribution to the total phase difference.

Figure 26 shows the sideband rejection ratio for an RF input from 2 to 3GHz, LO=2.5GHz after

calibration. The sideband rejection is better than 40dB for the entire band and better than 50dB

for most of the band. The drop in SRR close to RF=2.5GHz is due to the AC coupling of the

ADCs. The calibration and measurements were performed with the analog front end at 31±1 °C.

When the test tone amplitude on the rejected sideband is less than the spurious signal content, the

SRR is measured as the ratio of the test tone in the pass band to the stronger spurious in the

rejected band, so the measurement is limited by the ADC spurious-free dynamic range to about

50 dB.

øLO

øIF

35

Figure 26: Sideband Rejection Ratio after calibration of all spectral channels. The drop in SRR close to

RF=2.5GHz is due to the AC coupling of the ADCs. The lower values closed to 45 dB are associated with

stronger spurious signals produced by the ADC.

Figure 27 shows the sideband rejection ratio for a RF band of 1.7 to 3.7 GHz. Two LO

frequencies were used at 2.2 and 3.2 GHz. Calibration was performed at each LO. The figure

shows that the sideband rejection is similar for different LOs and shows no degradation on the

edges of the RF band.

Figure 27: Two LO´s Sideband Rejection Ratio. LO were set to 2.2 and 3.2 GHz while RF ranged from 1.7 to

3.7 GHz. 512 channels per sideband were measured for this figure.

LSB USB

LSB LSB USB USB

36

Figure 28 shows the calibration curves for the two LO frequencies of the measurement above. It

can be seen that both øLO and øIF varied when changing LO. It is not clear why øIF varies for

different LO setting. One possible explanation is due to the variation of the mixers return loss at

different LO frequency and power. This could be causing standing waves to appear after the

mixers affecting the phase of the IF. More experiments are necessary to better explain these

measurements.

(a) (b)

Figure 28: Two LO´s calibration curves. LO were set to (a) 2.2 and (b) 3.2 GHz. øLO and øIF varied on each

measurement.

4.3.2. Thermal stability measurements

To study the thermal stability of the calibration the analog plate was heated up to 40±1 °C and the

SRR was measured for 512 channels. The calibration coefficients remain the same as that

measured at 31±1 °C. Figure 29 shows a degradation of up to 20dB for this experiment. The

main cause of SRR sensitivity may be the temperature induced phase unbalance due to the low

integration of the test front end. Our front end is made of individual components mounted on

rather big (31x18cm) plate and connected together. Moreover, two 9cm cables were used

between the RF hybrid and the mixers. Better integration, particularly of the RF and LO

components, should improve SRR thermal stability.

øLO

øIF

øLO

øIF

37

Figure 29: Sideband Rejection Ratio measured at 40±1C with calibration performed at 31±1C. The figure

shows the calibration thermal stability of the analog front end used for this experiment. Shorter cables and

higher integration particularly of the RF and LO components may improve the thermal stability.

After cooling back to 31±1°C the SRR returns to essentially the same values of Figure 26

suggesting a good long term stability of the calibration. Three such thermal cycles were

performed within 48 hours. The SRR was measured for each cycle at 31±1°C. Results are shown

in Figure 30.

Figure 30: Sideband Rejection Ratio measured at 31±1°C for 3 thermal cycles. The plate was heated up to

40±1°C every time. The calibration was performed only once prior the thermal cycling. The curves overlap

almost perfectly showing a good stability of the calibration.

38

4.3.3. Preliminary results on a millimeter-wave front end

First results have been obtained from the integration of the DSSS with an 86-115 GHz front end.

The front end is a custom-made design using an in-house built RF hybrid and LO splitter, two

commercial mixers and a Gunn oscillator as LO
9
. The mixers are not matched pairs so significant

phase and amplitude unbalances are expected. The RF source for calibration is a 20GHz Agilent

PSG series synthesizer followed by a 6 active multiplier. Figure 31 shows the 3mm front end

used for the experiment. The LO injection is at the left where also the IF output filters are seen.

At the center the two mixers and the LO splitter are depicted as well as the heating resistor

mounted on top of the RF hybrid. The temperature is measured on the LO splitter using a

thermocouple (yellow cable).

Figure 31: 3mm front end used for the experiment. The LO injection is at the left where also the IF output

filters are seen. At the center the two mixers and the LO splitter are depicted as well as the heating resistor

mounted on top of the RF hybrid.

A number of difficulties were faced during integration, mainly due the harmonic content of the

mixers, high phase noise of the Gunn LO and the presence of RFI on the IF band. On one hand

the harmonic content of mixers and the RFI prevented us for measuring sideband rejections

above 40-45 dB, since at that level the spurious content was generally above the rejected test

tone. On the other hand phase noise of the LO complicated the calibration process due to the way

the calibration measurement is implemented. Nevertheless we were able to obtain good SRRs

9
 Design, construction and testing of a 2SB-configuration receiver for the small millimeter-wave telescope (SMWT),

PhD Thesis, Rafael Rodrigues (in preparation), soon available on:

http://www.das.uchile.cl/lab_mwl/publications.html

Filter

Mixer

LO injection

Heater

<- RF input

RF Hybrid

39

between 40 and 45 dB for the entire band. Figure 32 shows the SRR for a RF frequency of 100.5

to 101.5 GHz. The calibration was performed for 64 channels with the rest filled by linear

interpolation. Calibration and SRR measurements were done with the front end at a temperature

of 26 C. The wider gap at IF=0 is caused in this case by the AC coupling of the mixers, which

have a 0.1-3 GHz IF.

Figure 32: Sideband Rejection Ratio at 201 points after calibration for 64 points. The LO is at 101.0 GHz and

the test tone ranged from 100.5 to 101.5 GHz. Calibration and SRR measurement were performed at a

temperature of 26C.

Figure 33 shows a typical LSB and USB spectra with the calibration applied. The LO is set to

101.0 GHz while the test tone is at 101.350 GHz. RFI is seen around 100MHz while the spurious

signals around 200MHz are mainly due to harmonics and digital artifacts. The test tone is applied

on the USB and is rejected more than 40 dB on the LSB. The USB spectrum shows the strong

phase noise associated with the LO.

40

Figure 33: LSB and USB spectra. The LO is set at 101.0 GHz while the test tone to 101.350 GHz. RFI is seen

around 100MHZ and the spurious signals around 200MHz are mainly due to harmonics and digital artifacts.

The calibration process is complicated by the phase noise since the calibration spectrometer

stores instantaneous spectra at a high speed on the BRAM memories, which are readout at a

lower speed from the control computer. Since there is no flow control of the data, it is possible

that one read spectrum on the computer has parts coming from different (successive)

instantaneous spectra stored by the spectrometer.

If the down-converted test tone phase and amplitude are stable no effect is perceived, since all

instantaneous spectra are basically equal. If the test tone has fast amplitude or phase fluctuations,

the computer will not acquire accurate data. The result is seen as a noisy, irregular, calibration

measurement. Post processing of the calibration data was required to achieve the results of Figure

32. Many calibration points were flagged out and completed through interpolation of the closer

well-acquired data. A moving window data selection algorithm was written to perform this task.

Work is being done to replace the LO with one of better performance as well as to develop a

calibration spectrometer with data flow control and integration capabilities.

The thermal stability was measured by heating the RF hybrid and mixers up to 36C. No strong

SRR degradation was noticed in comparison with the results of the lower frequency test front end

(Figure 29). The improved stability can be explained due to the fact that the IF band is now small

compared with the RF band, while in the former case was comparable. The RF hybrid and mixers

are design to work from 85 to 115GHz, so the 1GHz IF represents only a 3.3% of the RF band,

while in the former case, the IF represented more than a 45% of the RF bandwidth. Also the mm-

wave front end is well integrated and no heating was applied to the IF plate in this case.

41

Figure 34: 201 points Sideband Rejection Ratio after 64 points calibration. The LO is at 101.0 GHz and the

test tone ranged from 100.5 to 101.5 GHz. Calibration was done at a temperature of 26C while SRR

measurement was performed at 36C.

The degradation is only noticed in the USB where the SRR was reduced by about 6 dB. As we

discussed above the SRR measurement is limited by the harmonic-free dynamic range of the

setup, so the observed degradation has to be interpreted as a lower limit. Probably both sidebands

degraded, but only USB degraded enough to be detected by the setup. Nevertheless, it is difficult

to explain this disparate degradation, particularly giving the small IF/RF ratio of this receiver. An

improved setup of both analog and digital parts, as well as more detailed measurements over

wider RF bandwidths are necessary to better understand the performance of this receiver. This

will be part of a future work.

42

5. Future work and astronomical testing

Future work will be devoted to increase the IF bandwidth with a goal of 1.0 to 1.5 GHz per

sideband as well as to better understand and improve the performance of the mm-wave digital

sideband separating receiver. The integration of the mm-wave receiver into the 1.2m Southern

Millimeter Wave Telescope
10

 is also planned for near future. This upgrade will allow optimal

observation of multiple CO lines. An example science case is the simultaneous observation of
12

CO and
13

CO in the galactic center. In this interstellar environment the intensity ratio
12

CO/
13

CO can be as low as 5 and the velocity range in excess of +/- 300 Km/s producing line

widths of more than 250MHz. Having each line in one sideband, a high sideband rejection will be

critical to be able to extract the exact line profiles all the way down to the continuum noise

baseline.

10

 The 1.2m Southern Millimeter Wave Telescope is a 85-115GHz radio telescope run by our group at the Cerro

Calán National Observatory. http://www.das.uchile.cl/lab_mwl/project.html

43

6. Conclusion

The digitalization of radio-astronomy instrumentation has been the trend during the last decades.

Analog filter banks or acousto-optic spectrometers are no longer built and digital technology is

the common solution for new back ends. With the increasing power of digital hardware mainly

fast, high resolution ADCs and FPGA technology the digitalization of receiver front ends has

become an option. This new approach promises to reduce complexity and increase the

performance of the next generation instruments. In this work a concrete step on digitalization of

radio-astronomy receivers has been taken building a real-time, calibrated, digital sideband

separating spectrometer.

A 4GHz front end was used to test the spectrometer. Two 500MHz IF channels were processed

achieving a sideband rejection ratio better than 40 dB over the entire bandwidth and better than

50dB for most of the band. The bandwidth and spectral resolution are competitive for

astronomical applications and the sideband rejection is 20 to 30dB better than current millimeter

wave sideband separating receivers.

Preliminary tests were done at 101GHz, using a 85-115 GHz front end. The results were similar

to those obtained at lower frequencies with an SRR above 40dB for most of the band. This test

shows the applicability of the technic at millimeter wavelengths.

The work demonstrates that the use of fast ADCs and FPGA based platforms to perform signal

processing currently implemented by analog means can substantially increase the performance of

sideband separating receivers.

44

Appendix A: Python Scripts

Calibration_readout.py

!/usr/bin/env python

This script was writen by Ricardo Finger et.al. (rfinger@das.uchile.cl).

it is used to get the data to calibrate the sideband separating

spectrometer.

it works with the ssm_dsp_dif_sin_acc_2013_Jan_04_1441.bof

You need to have KATCP and CORR installed. Get them from

http://pypi.python.org/pypi/katcp and http://casper.berkeley.edu/

We used pieces of code writen by Jason Manley (2009) for the CASPER

tutorial 3.

TO DO: add support for determining ADC input level

import corr,time,struct,sys,logging,Gnuplot,array, telnetlib, valon_synth

from math import *

katcp_port=7147

all_data=open('all_data.dat','w')

cal_data=open('cal_data.dat','w')

def exit_fail():

 print 'FAILURE DETECTED. Log entries:\n',lh.printMessages()

 try:

 fpga.stop()

 except: pass

 raise

 exit()

def exit_clean():

 try:

 fpga.stop()

 except: pass

 exit()

def get_data():

Channel I

 re_0i=struct.unpack('>512q',fpga.read('dout0_0',512*8,0))

 im_0i=struct.unpack('>512q',fpga.read('dout0_1',512*8,0))

 re_2i=struct.unpack('>512q',fpga.read('dout0_2',512*8,0))

 im_2i=struct.unpack('>512q',fpga.read('dout0_3',512*8,0))

Channel Q

 re_0q=struct.unpack('>512q',fpga.read('dout1_0',512*8,0))

 im_0q=struct.unpack('>512q',fpga.read('dout1_1',512*8,0))

 re_2q=struct.unpack('>512q',fpga.read('dout1_2',512*8,0))

 im_2q=struct.unpack('>512q',fpga.read('dout1_3',512*8,0))

 spec_i=[]

 spec_q=[]

 power_spec_i=[]

 power_spec_q=[]

http://casper.berkeley.edu/

45

The "+1" in the "for" is to avoid division by zero.

The induced error should be neglectable.

The "+1" can be removed is you have a detectable noise floor.

 for i in range(512):

 spec_i.append(float(re_0i[i]+1)/(2**18))

 spec_i.append(float(im_0i[i]+1)/(2**18))

 spec_i.append(float(re_2i[i]+1)/(2**18))

 spec_i.append(float(im_2i[i]+1)/(2**18))

 spec_q.append(float(re_0q[i]+1)/(2**18))

 spec_q.append(float(im_0q[i]+1)/(2**18))

 spec_q.append(float(re_2q[i]+1)/(2**18))

 spec_q.append(float(im_2q[i]+1)/(2**18))

 for i in range(0,4*512,2):

 power_spec_i.append(10*log10(1+(spec_i[i]**2+spec_i[i+1]**2)**1))

 power_spec_q.append(10*log10(1+(spec_q[i]**2+spec_q[i+1]**2)**1))

 return spec_i, spec_q, power_spec_i, power_spec_q

def c_angle(re,im):#complex angle / evaluates atan(Im/Re) for the 4

cuadrants

initializing

 out=0

 if re==0:

 re=10**-20

 if im==0:

 im=10**-20

Angle calculation

 if im>=0.0 and re>=0.0:

 out=atan(im/re)

 if im>=0.0 and re<=0.0:

 out=pi/2+atan(abs(re)/im)

 if im<=0.0 and re<=0.0:

 out=pi+atan(abs(im)/abs(re))

 if im<=0.0 and re>=0.0:

 out=(3*pi/2)+atan(re/abs(im))

 return out # the output is in radians

def trunca(f, n):

 '''Truncates/pads a float f to n decimal places without rounding'''

 slen = len('%.*f' % (n, f))

 return str(f)[:slen]

################ START OF MAIN ################

if __name__ == '__main__':

 from optparse import OptionParser

 p = OptionParser()

 p.set_usage('calibration_readout.py <ROACH_HOSTNAME_or_IP> [options]')

 p.set_description(__doc__)

 p.add_option('-s', '--skip', dest='skip', action='store_true',

 help='Skip reprogramming the FPGA and configuring EQ.')

 p.add_option('-b', '--bof', dest='boffile',type='str', default='',

 help='Specify the bof file to load')

 opts, args = p.parse_args(sys.argv[1:])

 bitstream = opts.boffile

46

 if args==[]:

 print 'Please specify a ROACH board. Run with the -h flag to see

all options.\nExiting.'

 exit()

 else:

 roach = args[0]

try:

 loggers = []

 lh=corr.log_handlers.DebugLogHandler()

 logger = logging.getLogger(roach)

 logger.addHandler(lh)

 logger.setLevel(10)

 print('Connecting to server %s on port %i... '%(roach,katcp_port)),

 fpga = corr.katcp_wrapper.FpgaClient(roach, katcp_port,

timeout=10,logger=logger)

 time.sleep(1)

 if fpga.is_connected():

 print 'ok\n'

 else:

 print 'ERROR connecting to server %s on port

%i.\n'%(roach,katcp_port)

 exit_fail()

 print '------------------------'

 print 'Programming FPGA with %s...' %bitstream,

 if not opts.skip:

 fpga.progdev(bitstream)

 print 'done'

 else:

 print 'Skipped.'

 time.sleep(1)

 print 'Configuring FFT shift register...',

 fpga.write('shift_ctrl','\x00\x00\x0f\xff')

 print 'done'

 print 'Resetting counters...',

 fpga.write_int('cnt_rst',1)

 fpga.write_int('cnt_rst',0)

 print 'done'

############## Start of the measurement ##################

 ti=time.time()

 bw=float(trunc(fpga.est_brd_clk())*4)

 LO=input('LO frequency GHz? ')*1000#LO is in MHz

 ch=input('number of channels(2^?) ')

rys = telnetlib.Telnet("172.17.89.49",5025)

valon=valon_synth.Synthesizer('/dev/ttyUSB0')

 agi = telnetlib.Telnet("172.17.89.50",5023)

agi.write("freq 2.0ghz\r\n")

agi.write("power -12dbm\r\n")

agi.write("output on\r\n")

47

rys.write("freq "+str(float(LO)/1000)+"ghz\r\n")

rys.write("output on\r\n")

 all_data.write('#Canal'+' '+'real i'.rjust(7)+' '+'imag i'.rjust(7)+'

'+'real q'.rjust(7)+' '+'imag q'.rjust(7)+' '+'amp_i'.rjust(7)+'

'+'amp_q'.rjust(7)+' '+'phase_i'.rjust(7)+' '+'phase_q'.rjust(7)+'

'+'amp_rat'.rjust(7)+' '+'ang_dif'.rjust(7)+' '+'phi'.rjust(7)+' \n')

set up the figures to be plotted

 g0 = Gnuplot.Gnuplot(debug=0)

 g1 = Gnuplot.Gnuplot(debug=0)

 g0.clear()

 g0.title('i Spectrum '+bitstream+' | Max frequency = '+str(bw)+' MHz')

 g0.xlabel('Channel #')

 g0.ylabel('power AU (dB)')

 g0('set style data linespoints')

 g0('set yrange [0:100]')

 g0('set xrange [-50:1074]')

 g0('set xtics 256')

 g0('set grid y')

 g0('set grid x')

 g1.clear()

 g1.title('q Spectrum'+bitstream+' | Max frequency = '+str(bw)+' MHz')

 g1.xlabel('Channel #')

 g1.ylabel('power AU (dB)')

 g1('set style data linespoints')

 g1('set yrange [0:100]')

 g1('set xrange [-50:1074]')

 g1('set xtics 256')

 g1('set grid y')

 g1('set grid x')

End setting figures to be plotted

############# Begin measureing USB ##############

 wait=0.5

 data_usb=[]

 print('Measuring USB')

 print('freq amp_i amp_q angle_i angle_q amp_i/q phi phase_dif

')

 for i in range(1*1024/(2**ch),1023,1024/(2**ch)):#USB

 t=time.time()

 if i/20==float(i)/20:

 print(str(trunca((t-ti)/60,2))+' minutes'+'

'+str(trunca(float(i)*100.0/2044,2))+' %')

 #rys.write("freq "+ str(LO+(2*i)*bw/2048) +"mhz\r\n")

 agi.write("freq "+ str(LO+(2*i)*bw/2048) +"mhz\r\n")

 time.sleep(wait)

 spec_i, spec_q, power_spec_i, power_spec_q = get_data()

 amp_i=((spec_i[2*i])**2+(spec_i[2*i+1])**2)**0.5

 amp_q=((spec_q[2*i])**2+(spec_q[2*i+1])**2)**0.5

 angle_i=c_angle(spec_i[2*i],spec_i[2*i+1])*180/(pi) #in degrees

 angle_q=c_angle(spec_q[2*i],spec_q[2*i+1])*180/(pi) #in degrees

 phi=c_angle(spec_i[2*i]*spec_q[2*i]+spec_i[2*i+1]*spec_q[2*i+1],spec

48

_q[2*i]*spec_i[2*i+1]-spec_i[2*i]*spec_q[2*i+1])*180/(pi) #phi_f+/-phi_LO

or Phi_USB from eq_13(2008)

 amp_ratio=amp_i/amp_q# X from eq_9(2008)

 phase_dif=(angle_i-angle_q)# This should be equal to phi

 if phase_dif<0:

 phase_dif=360+phase_dif

 data_usb.append([1/(amp_ratio),LO+(2*i)*bw/2048])

 data_usb.append([180-phase_dif,LO+(2*i)*bw/2048])

########### Only for printing on screen and on "all_data" ########

 amp_i=trunca(amp_i,2)

 amp_q=trunca(amp_q,2)

 angle_i=trunca(angle_i,2)

 angle_q=trunca(angle_q,2)

 amp_ratio=trunca(amp_ratio,2)

 phase_dif=trunca(phase_dif,2)

 phi=trunca(phi,2)

 print(str(trunca(LO+(2*i)*bw/2048,0))+' '+str(amp_i).rjust(7)+'

'+str(amp_q).rjust(7)+' '+str(angle_i).rjust(7)+'

'+str(angle_q).rjust(7)+' '+str(amp_ratio).rjust(7)+'

'+str(phi).rjust(7)+' '+str(phase_dif).rjust(7))

 all_data.write(repr(2*i).rjust(6)+'

'+trunca(spec_i[2*i],2).rjust(7)+' '+trunca(spec_i[2*i+1],2).rjust(7)+'

'+trunca(spec_q[2*i],2).rjust(7)+' '+trunca(spec_q[2*i+1],2).rjust(7)+'

'+(amp_i).rjust(7)+' '+(amp_q).rjust(7)+' '+(angle_i).rjust(7)+'

'+(angle_q).rjust(7)+' '+(amp_ratio).rjust(7)+' '+(phase_dif).rjust(7)+'

'+phi.rjust(7)+' \n')

########### plotting ######################

 g0.plot(power_spec_i)

 g1.plot(power_spec_q)

############### Begin measurement LSB ################

 all_data.write('lower_sideband'+' \n')

 all_data.write('#Canal'+' '+'real i'.rjust(7)+' '+'imag i'.rjust(7)+'

'+'real q'.rjust(7)+' '+'imag q'.rjust(7)+' '+'amp_i'.rjust(7)+'

'+'amp_q'.rjust(7)+' '+'phase_i'.rjust(7)+' '+'phase_q'.rjust(7)+'

'+'amp_rat'.rjust(7)+' '+'ang_dif'.rjust(7)+' '+'phi'.rjust(7)+' \n')

 data_lsb=[]

 print('Measuring LSB')

 print('freq amp_i amp_q angle_i angle_q amp_i/q phi phase_dif

')

 for i in range(1*1024/(2**ch),1023,1024/(2**ch)):#LSB

 t=time.time()

 if i/20==float(i)/20:

 print(str(trunca((t-ti)/60,2))+' minutes'+'

'+str(trunca(50+float(i)*100.0/2044,2))+' %')

 #rys.write("freq "+ str(LO-(2*i)*bw/2048) +"mhz\r\n")

 agi.write("freq "+ str(LO-(2*i)*bw/2048) +"mhz\r\n")

 time.sleep(wait)

 spec_i, spec_q, power_spec_i, power_spec_q = get_data()

 amp_i=((spec_i[2*i])**2+(spec_i[2*i+1])**2)**0.5

 amp_q=((spec_q[2*i])**2+(spec_q[2*i+1])**2)**0.5

 angle_i=c_angle(spec_i[2*i],spec_i[2*i+1])*180/(pi) #en grados

 angle_q=c_angle(spec_q[2*i],spec_q[2*i+1])*180/(pi) #en grados

 phi=c_angle(spec_i[2*i]*spec_q[2*i]+spec_i[2*i+1]*spec_q[2*i+1],spec

49

_q[2*i]*spec_i[2*i+1]-spec_i[2*i]*spec_q[2*i+1])*180/(pi)#phi_f+/-phi_LO

or Phi_USB from eq_13(2008)

 amp_ratio=amp_i/amp_q# X from eq_9(2008)

 phase_dif=(angle_i-angle_q)# This should be equal to phi

 if phase_dif<0:

 phase_dif=360+phase_dif

 data_lsb.append([amp_ratio,LO-(2*i)*bw/2048])

 data_lsb.append([phase_dif-180,LO-(2*i)*bw/2048])

########### Only for printing on screen and on "all_data" ########

 amp_i=trunca(amp_i,2)

 amp_q=trunca(amp_q,2)

 angle_i=trunca(angle_i,2)

 angle_q=trunca(angle_q,2)

 amp_ratio=trunca(amp_ratio,2)

 phase_dif=trunca(phase_dif,2)

 phi=trunca(phi,2)

 print(str(trunca(LO-(2*i)*bw/2048,0))+' '+str(amp_i).rjust(7)+'

'+str(amp_q).rjust(7)+' '+str(angle_i).rjust(7)+'

'+str(angle_q).rjust(7)+' '+str(amp_ratio).rjust(7)+'

'+str(phi).rjust(7)+' '+str(phase_dif).rjust(7))

 all_data.write(repr(2*i).rjust(6)+'

'+trunca(spec_i[2*i],2).rjust(7)+' '+trunca(spec_i[2*i+1],2).rjust(7)+'

'+trunca(spec_q[2*i],2).rjust(7)+' '+trunca(spec_q[2*i+1],2).rjust(7)+'

'+(amp_i).rjust(7)+' '+(amp_q).rjust(7)+' '+(angle_i).rjust(7)+'

'+(angle_q).rjust(7)+' '+(amp_ratio).rjust(7)+' '+(phase_dif).rjust(7)+'

'+phi.rjust(7)+' \n')

########### plotting ######################

 g0.plot(power_spec_i)

 g1.plot(power_spec_q)

########### Writing calibration data ########

cal_data.write('#lower_sideband'+' \n')

 for i in range(0,len(data_lsb),2):

 cal_data.write('0 '+str(data_lsb[i][0])+' '+str(data_lsb[i][1])+'

\n')# stores: amp_ratio IF_freq

 for i in range(1,len(data_lsb),2):

 cal_data.write('0 '+str(data_lsb[i][0])+' '+str(data_lsb[i][1])+'

\n')# stores: phase_dif-180 IF_freq

cal_data.write('#upper_sideband'+' \n')

 for i in range(0,len(data_usb),2):

 cal_data.write('0 '+str(data_usb[i][0])+' '+str(data_usb[i][1])+'

\n')# stores: 1/amp_ratio IF_freq

 for i in range(1,len(data_usb),2):

 cal_data.write('0 '+str(data_usb[i][0])+' '+str(data_usb[i][1])+'

\n')# stores: 180-phase_dif IF_freq

 tf=time.time()

 print('Done! Total time='+repr(trunca((tf-ti)/60,1))+' minutes')

except KeyboardInterrupt:

 exit_clean()

except:

 exit_fail()

exit_clean()

50

SRR_measurement.py

!/usr/bin/env python

This script reads the calibration data "cal_data.dat" and calibrates the

sideband separating spectrometer

You need to have KATCP and CORR installed. Get them from

http://pypi.python.org/pypi/katcp and http://casper.berkeley.edu/

We use pieces of code writen by Jason Manley (2009) for the CASPER

tutorial 3.

TO DO: add support for determining ADC input level

import corr, time, struct, sys, logging, Gnuplot, valon_synth, telnetlib,

numpy as np

from math import *

bitstream = 'No_bof_file_error'

katcp_port=7147

t1 = time.time() #Starting time.

print ('---')

print (' Sideband Rejection Ration Measurement ')

print ('---')

def hhmmss(seconds):

 hh = seconds // 3600

 mm = (seconds % 3600)//60

 ss = (seconds %3600) %60

 return hh,mm,ss

def exit_fail():

 print 'FAILURE DETECTED. Log entries:\n',lh.printMessages()

 try:

 fpga.stop()

 except: pass

 raise

 exit()

def exit_clean():

 try:

 fpga.stop()

 except: pass

 exit()

def get_data():

 #get the data...

 acc_n = fpga.read_uint('acc_cnt')

Channel I

 a_0l=struct.unpack('>512Q',fpga.read('dout0_0',512*8,0))

 a_1l=struct.unpack('>512Q',fpga.read('dout0_1',512*8,0))

 a_2l=struct.unpack('>512Q',fpga.read('dout0_2',512*8,0))

 a_3l=struct.unpack('>512Q',fpga.read('dout0_3',512*8,0))

Channel Q

 a_0m=struct.unpack('>512Q',fpga.read('dout1_0',512*8,0))

 a_1m=struct.unpack('>512Q',fpga.read('dout1_1',512*8,0))

51

 a_2m=struct.unpack('>512Q',fpga.read('dout1_2',512*8,0))

 a_3m=struct.unpack('>512Q',fpga.read('dout1_3',512*8,0))

 interleave_i=[]

 interleave_q=[]

 interleave_log_i=[]

 interleave_log_q=[]

The "+1" in the "for" is to avoid division by zero.

The induced error should be neglectable.

The "+1" can be removed is you have a detectable noise floor.

 for i in range(512):

 interleave_i.append(float(((float(a_0l[i])+1)/(2**24))))

 interleave_i.append(float(((float(a_1l[i])+1)/(2**24))))

 interleave_i.append(float(((float(a_2l[i])+1)/(2**24))))

 interleave_i.append(float(((float(a_3l[i])+1)/(2**24))))

 interleave_q.append(float(((float(a_0m[i])+1)/(2**24))))

 interleave_q.append(float(((float(a_1m[i])+1)/(2**24))))

 interleave_q.append(float(((float(a_2m[i])+1)/(2**24))))

 interleave_q.append(float(((float(a_3m[i])+1)/(2**24))))

 for k in range(4*512):

 interleave_log_i.append(10*log10(interleave_i[k]))

 interleave_log_q.append(10*log10(interleave_q[k]))

 return acc_n, interleave_log_i, interleave_log_q

############# Opening archives ###################

srr_datos=open('srr_data.dat','w')

lsb_usb_testtone=open('lsb_usb_testtone.dat','w')

################ START OF MAIN ################

if __name__ == '__main__':

 from optparse import OptionParser

 p = OptionParser()

 p.set_usage('SRR_measurement.py <ROACH_HOSTNAME_or_IP> [options]')

 p.set_description(__doc__)

 p.add_option('-l', '--acc_len', dest='acc_len',

type='int',default=2*(2**28)/2048,

 help='Set the number of vectors to accumulate between dumps.

default is 2*(2^28)/2048, or just under 2 seconds.')

 p.add_option('-g', '--gain', dest='gain',

type='int',default=0x00001000,

 help='Set the digital gain (6bit quantisation scalar). Default is

0xffffffff (max), good for wideband noise. Set lower for CW tones.')

 p.add_option('-s', '--skip', dest='skip', action='store_true',

 help='Skip reprogramming the FPGA and configuring EQ.')

 p.add_option('-b', '--bof', dest='boffile',type='str', default='',

 help='Specify the bof file to load')

 opts, args = p.parse_args(sys.argv[1:])

 if args==[]:

 print 'Please specify a ROACH board. Run with the -h flag to see

all options.\nExiting.'

 exit()

52

 else:

 roach = args[0]

 if opts.boffile != '':

 bitstream = opts.boffile

try:

 loggers = []

 lh=corr.log_handlers.DebugLogHandler()

 logger = logging.getLogger(roach)

 logger.addHandler(lh)

 logger.setLevel(10)

 print('Connecting to server %s on port %i... '%(roach,katcp_port)),

 fpga = corr.katcp_wrapper.FpgaClient(roach, katcp_port,

timeout=10,logger=logger)

 time.sleep(1)

 if fpga.is_connected():

 print 'ok\n'

 else:

 print 'ERROR connecting to server %s on port

%i.\n'%(roach,katcp_port)

 exit_fail()

 print '------------------------'

 print 'Programming FPGA with %s...' %bitstream,

 if not opts.skip:

 fpga.progdev(bitstream)

 print 'done'

 else:

 print 'Skipped.'

 print 'Configuring FFT shift register...',

 fpga.write('shift_ctrl','\x00\x00\x0f\xff')

 print 'done'

 print 'Configuring accumulation period...',

 fpga.write_int('acc_len',opts.acc_len)

 print 'done'

 print 'Resetting counters...',

 fpga.write_int('cnt_rst',1)

 fpga.write_int('cnt_rst',0)

 print 'done'

 print 'Setting digital gain of all channels to %i...'%opts.gain,

 if not opts.skip:

 fpga.write_int('gain',opts.gain) #write the same gain for all

inputs, all channels

 print 'done'

 else:

 print 'Skipped.'

 bw=float(trunc(fpga.est_brd_clk())*4)

 print ('Detected bandwidth: '+str(fpga.est_brd_clk()*4)+' MHz'+',

Using: '+str(bw)+' MHz')

 LO=input('LO frequency [GHz] ? : ') #GHz

53

 start=LO-bw/1000

 stop=LO+bw/1000

 print ('Measuring span: '+str(start)+' to '+str(stop)+' GHz')

 points=input('Number of SRR points? :')

 cal_mode=input('Calibration mode? (1:Calibrated, 2:Ideal IF hybrid):

')

########### setting up figures #############

 g0 = Gnuplot.Gnuplot(debug=0)

 g1 = Gnuplot.Gnuplot(debug=0)

 g2 = Gnuplot.Gnuplot(debug=0)

 g0.clear()

 g0.title('Channel I(USB) spectrum using '+bitstream+' | Max frequency

= '+str(bw)+' MHz')

 g0.xlabel('Channel #')

 g0.ylabel('Power AU (dB)')

 g0('set style data linespoints')

 g0('set yrange [0:120]')

 g0('set xrange [-50:2098]')

 g0('set ytics 5')

 g0('set xtics 256')

 g0('set grid y')

 g0('set grid x')

 g1.clear()

 g1.title('Channel Q(LSB) spectrum using '+bitstream+' | Max frequency

= '+str(bw)+' MHz')

 g1.xlabel('Channel #')

 g1.ylabel('Power AU (dB)')

 g1('set style data linespoints')

 g1('set yrange [0:120]')

 g1('set xrange [-50:2098]')

 g1('set ytics 5')

 g1('set xtics 256')

 g1('set grid y')

 g1('set grid x')

 g2.clear()

 g2.title('Sideband Rejection Ratio using '+bitstream+' | running at

'+str(bw)+' MHz')

 g2.xlabel('RF freq (GHz) - shown LSB and USB -')

 g2.ylabel('SSR (dB)')

 g2('set style data linespoints')

 g2('set yrange [0:60]')

 g2('set xrange ['+str(start-0.05)+":"+str(stop+0.05)+']')

 g2('set ytics 5')

 g2('set grid y')

 g2('set grid x')

starting the measurement proccess

 rys = telnetlib.Telnet("172.17.89.49",5025)

agi = telnetlib.Telnet("172.17.89.50",5023)

valon=valon_synth.Synthesizer('/dev/ttyUSB0')

54

 srr=[]

 rf=[]

 tono_usb=[]

 tono_lsb=[]

 canales=[]

 ch=[]

 for i in range(points):

 rf.append(start+((stop-start)*i/points))#in GHz

############ Aquaring calibration data #############

 print 'Aquaring calibration data'

 c2amp=[]

 c2phase=[]

 c3amp=[]

 c3phase=[]

 cal_data=np.loadtxt('cal_data.dat')#calibration data

#ch1 + c2*ch2 = USB

 for i in range (0,(len(cal_data)/4)):

 c2amp.append(cal_data[i,1])# X_lsb

 for i in range ((1*len(cal_data)/4),(2*(len(cal_data)/4))):

 c2phase.append(cal_data[i,1])# phi_lsb - 180

#ch2 + c3*ch1 = LSB

 for i in range ((2*(len(cal_data)/4)),(3*(len(cal_data)/4))):

 c3amp.append(cal_data[i,1])# 1/X_usb

 for i in range ((3*(len(cal_data)/4)),(4*(len(cal_data)/4))):

 c3phase.append(cal_data[i,1])# 180 - phi_usb

 print 'Done'

############ writing calibration data ######################

 print 'writing calibration data'

 if cal_mode == 1:

 for j in range(0,510):

 print ('Writing coeficient '+str(j)+' of 510'+' please

wait...')

########################## writing C2 #######################

fpga.write('VCM0_RE_BRAM',struct.pack('>1l',c2amp[2*j]*cos((pi/180)*c2phas

e[2*j])*2**24),4*j) #ch 0,4,8 ... (4i)

fpga.write('VCM0_IM_BRAM',struct.pack('>1l',c2amp[2*j]*sin((pi/180)*c2phas

e[2*j])*2**24),4*j)

fpga.write('VCM1_RE_BRAM',struct.pack('>1l',((c2amp[2*j]+c2amp[(2*j)+1])/2

)*cos((pi/180)*((c2phase[2*j]+c2phase[(2*j)+1])/2))*2**24),4*j) #ch 1,5,9

... (4i+1) (interpolated)

fpga.write('VCM1_IM_BRAM',struct.pack('>1l',((c2amp[2*j]+c2amp[(2*j)+1])/2

)*sin((pi/180)*((c2phase[2*j]+c2phase[(2*j)+1])/2))*2**24),4*j)

fpga.write('VCM2_RE_BRAM',struct.pack('>1l',c2amp[(2*j)+1]*cos((pi/180)*c2

phase[(2*j)+1])*2**24),4*j) #canal 2,6,10 ... (4i+2)

fpga.write('VCM2_IM_BRAM',struct.pack('>1l',c2amp[(2*j)+1]*sin((pi/180)*c2

phase[(2*j)+1])*2**24),4*j)

55

fpga.write('VCM3_RE_BRAM',struct.pack('>1l',((c2amp[(2*j)+1]+c2amp[(2*j)+2

])/2)*cos((pi/180)*((c2phase[(2*j)+1]+c2phase[(2*j)+2])/2))*2**24),4*j)

#canal 3,7,11 ... (4i+3) (interpolated)

fpga.write('VCM3_IM_BRAM',struct.pack('>1l',((c2amp[(2*j)+1]+c2amp[(2*j)+2

])/2)*sin((pi/180)*((c2phase[(2*j)+1]+c2phase[(2*j)+2])/2))*2**24),4*j)

########################## writing C3 #######################

fpga.write('VCM4_RE_BRAM',struct.pack('>1l',c3amp[2*j]*cos((pi/180)*c3phas

e[2*j])*2**24),4*j)

fpga.write('VCM4_IM_BRAM',struct.pack('>1l',c3amp[2*j]*sin((pi/180)*c3phas

e[2*j])*2**24),4*j)

fpga.write('VCM5_RE_BRAM',struct.pack('>1l',((c3amp[2*j]+c3amp[(2*j)+1])/2

)*cos((pi/180)*((c3phase[2*j]+c3phase[(2*j)+1])/2))*2**24),4*j)

fpga.write('VCM5_IM_BRAM',struct.pack('>1l',((c3amp[2*j]+c3amp[(2*j)+1])/2

)*sin((pi/180)*((c3phase[2*j]+c3phase[(2*j)+1])/2))*2**24),4*j)

fpga.write('VCM6_RE_BRAM',struct.pack('>1l',c3amp[(2*j)+1]*cos((pi/180)*c3

phase[(2*j)+1])*2**24),4*j)

fpga.write('VCM6_IM_BRAM',struct.pack('>1l',c3amp[(2*j)+1]*sin((pi/180)*c3

phase[(2*j)+1])*2**24),4*j)

fpga.write('VCM7_RE_BRAM',struct.pack('>1l',((c3amp[(2*j)+1]+c3amp[(2*j)+2

])/2)*cos((pi/180)*((c3phase[(2*j)+1]+c3phase[(2*j)+2])/2))*2**24),4*j)

fpga.write('VCM7_IM_BRAM',struct.pack('>1l',((c3amp[(2*j)+1]+c3amp[(2*j)+2

])/2)*sin((pi/180)*((c3phase[(2*j)+1]+c3phase[(2*j)+2])/2))*2**24),4*j)

 elif cal_mode == 2: # Ideal IF Hybrid camp=1, cphase=-90

 for i in range(512):

 print ('Writing coeficient '+str(i)+' of 510'+' please

wait...')

 fpga.write('VCM0_RE_BRAM',struct.pack('>1l',+0*2**24),4*i)

 fpga.write('VCM0_IM_BRAM',struct.pack('>1l',-1*2**24),4*i)

 fpga.write('VCM1_RE_BRAM',struct.pack('>1l',+0*2**24),4*i)

 fpga.write('VCM1_IM_BRAM',struct.pack('>1l',-1*2**24),4*i)

 fpga.write('VCM2_RE_BRAM',struct.pack('>1l',+0*2**24),4*i)

 fpga.write('VCM2_IM_BRAM',struct.pack('>1l',-1*2**24),4*i)

 fpga.write('VCM3_RE_BRAM',struct.pack('>1l',+0*2**24),4*i)

 fpga.write('VCM3_IM_BRAM',struct.pack('>1l',-1*2**24),4*i)

 fpga.write('VCM4_RE_BRAM',struct.pack('>1l',+0*2**24),4*i)

 fpga.write('VCM4_IM_BRAM',struct.pack('>1l',-1*2**24),4*i)

 fpga.write('VCM5_RE_BRAM',struct.pack('>1l',+0*2**24),4*i)

 fpga.write('VCM5_IM_BRAM',struct.pack('>1l',-1*2**24),4*i)

 fpga.write('VCM6_RE_BRAM',struct.pack('>1l',+0*2**24),4*i)

 fpga.write('VCM6_IM_BRAM',struct.pack('>1l',-1*2**24),4*i)

 fpga.write('VCM7_RE_BRAM',struct.pack('>1l',+0*2**24),4*i)

 fpga.write('VCM7_IM_BRAM',struct.pack('>1l',-1*2**24),4*i)

 print('--- Calibration completed ---')

################## Calibration completed #########################

56

 modo=1 # Choosing type of plot

################# Ploting SSR (MODO 1) #########

 if modo == 1:

 srr_datos.write('#SRR_values #Frequency \n')

 for i in range(points):

 print('meauring RF = '+str(rf[i])+' GHz')

 rys.write("freq " + str(rf[i]) + "ghz\r\n")

 time.sleep(0.5)

 acc_n, interleave_log_i, interleave_log_q = get_data()

 interleave_log_i[0]=interleave_log_i[1] #fixing DC offset

 interleave_log_q[0]=interleave_log_q[1] #fixing DC offset

Plots

 g0.plot(interleave_log_i)

 g1.plot(interleave_log_q)

Calculates sideband rejection

 if rf[i]<LO:

 srr.append([rf[i],max(interleave_log_q)-

max(interleave_log_i)])

 elif rf[i]>=LO:

 srr.append([rf[i],max(interleave_log_i)-

max(interleave_log_q)])

############### Plots and writes SRR ###########

 g2.plot(srr)

 srr_datos.write(str(srr[i][1])+' '+str(rf[i])+' \n')

 elif modo ==2:

######### INICIO DE TONO DE PRUEBA (LSB AND USB SPECTRA FOR TEST TONE)

(MODO 2) #####

 agi.write("freq " + str(2.6) + "ghz\r\n") # TONO DE PRUEBA en

2600 MHz

 time.sleep(0.5)

 acc_n, interleave_log_i, interleave_log_q = get_data()

 time.sleep(0.1)

 g0.plot(interleave_log_i)

 g1.plot(interleave_log_q)

 for i in range(0,len(interleave_log_b)):

 lsb_usb_testtone.write(str(interleave_log_i[i])+'

'+str(interleave_log_q[i])+' '+str(i)+' \n')

 ##

 ##

 lsb_usb_testtone.close()

 t_ejec = time.time()-t1

 hh,mm,ss=hhmmss(t_ejec)

 print('done in: '+str(trunc(hh))+'[h] ,'+str(trunc(mm))+'[min]

,'+str(trunc(ss)),'[seg].')

 srr_datos.write('# FIN de datos SRR \n')

 srr_datos.close()

 print ('')

 print ('SRR measurement finished! - '+str(points)+' points')

 print ('')

57

this is to continue plotting the USB and LSB spectra ####

 ok=1

 while ok==1 :

 acc_n, interleave_log_i, interleave_log_q = get_data()

 time.sleep(0.5)

 g0.plot(interleave_log_i)

 g1.plot(interleave_log_q)

######### This code is to save each run with a different archive name

#######

out=raw_input('Enter a filename to save data:(already saved to

srr_data.dat)')

if out!='':

f = open(str(out), 'w')

f.write("RF (GHz),SSR (dB)\n")

for i in range (points):

f.write(str(srr[i][0])+","+str(srr[i][1])+"\n")

except KeyboardInterrupt:

 exit_clean()

except:

 exit_fail()

exit_clean()

58

Appendix B: List of Publications

Articles

A calibrated digital sideband separating spectrometer for radio astronomy applications, R. Finger,

P. Mena, N. Reyes, R. Rodriguez, L. Bronfman. Publications of the Astronomical Society of the

Pacific, Vol. 125, No. 925, pp. 263-269 (March, 2013).

Conferences

R. Rodriguez , R. Finger, P. Vasquez ,R. Bustos , N. Reyes b , P. Zorzi , L. Bronfman, F.P. Mena,

“New capabilities for the Southern 1.2-m mm-Wave Telescope" in Millimeter and Submillimeter

Detectors and Instrumentation for Astronomy V, edited by Wayne S. Holland; Jonas Zmuidzinas,

Amsterdam, July 2012.

R. Finger, P. Mena, N. Reyes, R. Rodriguez, L. Bronfman, “A calibrated digital sideband

separating spectrometer for radio astronomy applications”, The 24th International Symposium on

Space Terahertz Technology, ISSTT 2013, Groningen, the Netherlands.

59

Bibliography

A. Surkov, et al. (2006). 94 GHz Radar Sensor for Process Control and Imaging. ECNDT.

ALMA. (2013, March 20). ALMA system block diagram. EDM document number: SYSE-

80.04.01.00-004-Q-DWG. Retrieved from edm.alma.cl

Axel Murk, et al. (2009). Characterization of a 340 GHz Sub-Harmonic IQ Mixer with Digital

Sideband Separating Backend. 5th ESA Workshop on Millimetre Wave Technology and

Applications & 31st ESA Antenna Workshop. Noordwijk.

B. Henderson and J.Cook. (1985). Image-Reject and Single-Sideband Mixers. Retrieved March

20, 2013, from http://www.triquint.com/products/tech-

library/docs/WJ/ImageRej_n_SSB_mixers.pdf

Bin Zhou, et al. (2009). Pipeline FFT Architectures Optimized for FPGAs. International Journal

of Reconfigurable Computing.

D'Addario, L and Thompson, A ,(2000). ALMA Memo 304, Relative Sensitivity of Double- and

Single-Sideband Systems for both Total Power and Interferometry.

F. P. Mena, et al. (2011). Design and Performance of a 600–720-GHz Sideband Separating

Receiver Using AlOx and AlN SIS Junctions. IEEE TRANSACTIONS ON MICROWAVE

THEORY AND TECHNIQUES, Vol.59.

Heymsfield, A. et al. (2008). The 94-GHz radar dim band: Relevance to ice cloud properties and

CloudSat. GEOPHYSICAL RESEARCH LETTERS, Vol.35.

J. R. Fisher and M. A Morgan. (2008). Analysis of a Single-Conversion, Analog/Digital

Sideband-Separating Mixer Prototype. National Radio Astronomy Observatory

Electronics Division Internal Report No. 320 .

Koyel Das, et al. (2011). Conversion from linear to circular polarization in FPGA. Astronomy &

Astrophysics.

Lucas, R. (2000). ALMA Memo #300. “Reducing Atmospheric Noise in Single Dish observations

with ALMA”.

M. Morgan and J. R Fisher. (2010). Experiments With Digital Sideband-Separating

Downconversion. Publications of the Astronomical Society of the Pacific, vol. 122, no.

889, pp. 326-335.

Ma, H. (2011). Band 3 Cartridge Acceptance Report (SN 60) ALMA-EDM Document Number:

FEND-40.02.03.00-0573-A-REP.

Mahieu, S. (2011). Status of ALMA Band 7 Cartridge Production. 22nd International Symposium

on Space Terahertz Technology. Tucson.

60

Mangum, P. R. (1998). System Temperatures, Single Versus Double Sideband Operation, and

Optimum Receiver Performance. International Journal of Infrared and Millimeter Waves

.

R.P. Millenaar and A.-J. Boonstra. (2011). The radio frequency interference enviroment at

candidate SKA sites. SKA.

Reyes, N. (2013). Design of a receiver at 31-45 GHz based on HEMT amplifiers and Shottky

mixers. Santiago: Universidad de Chile.

Thompson, A. R. (1986). Interferometry and Synthesis in Radio Astronomy. New York: Wiley.

Vilaro, B. (2011). ALMA Cycle 0 Technical Handbook. http://almascience.eso.org/documents-

and-tools/cycle-0/alma-technical-handbook/view.

Wallace, H. B. (2010). Analysis of RF imaging applications at frequencies over 100GHz. Applied

Optics, vol.49.

