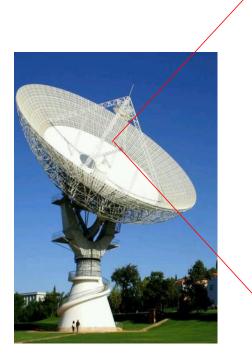
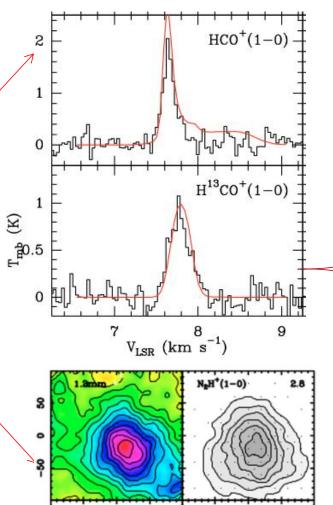
Astrochemical modeling to Planck cold clump G224.4-0.6

Jixing Ge Email: gejixing666@gmail.com

Co-authors: Diego Mardones, Jinhua He, Jonathan Rawlings, Sheng-yun Liu, Jun-ong Lee, Tie Liu, Lei Zhu, Qiang Chang, Natalia Inostroza and Siyi Feng


> Department of Astronomy, Universidad de Chile FONDECYT:3170768


12-09-2019

outline

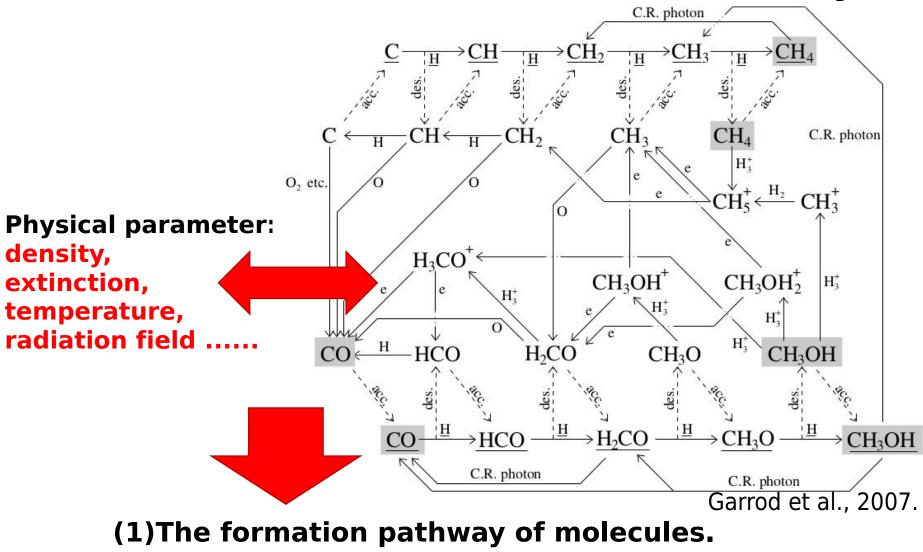
- Background
- Physical and chemical models for G224.4-0.6
- The three-dimensional projection effects
- Discussions
- Conclusions

From observation to physics

Line width (Nonthermal features)

Excitation temperature

Column densities


Abundances

density, extinction, temperature,

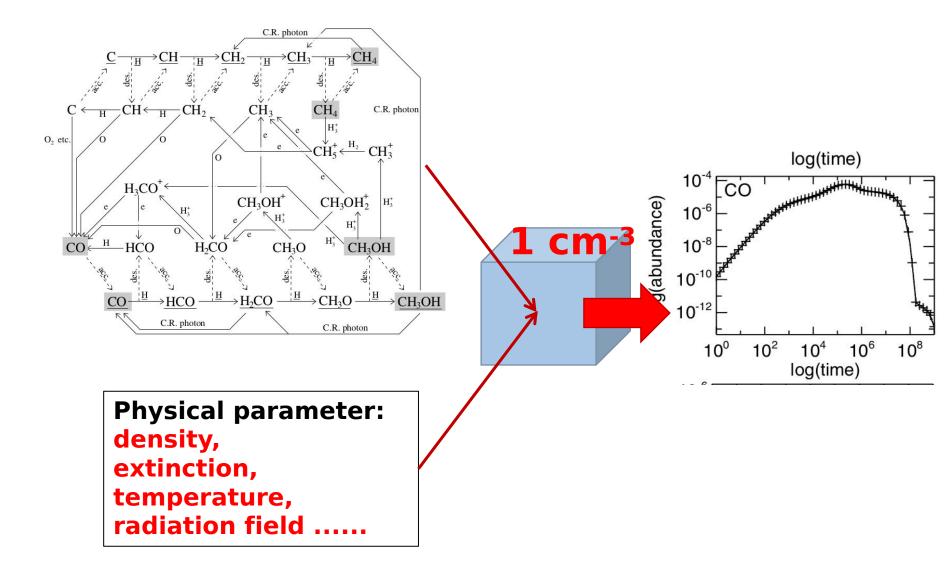
Molecular distributions

Tafalla et al., 2006, A&A 455, 577–593

From observations to chemistry

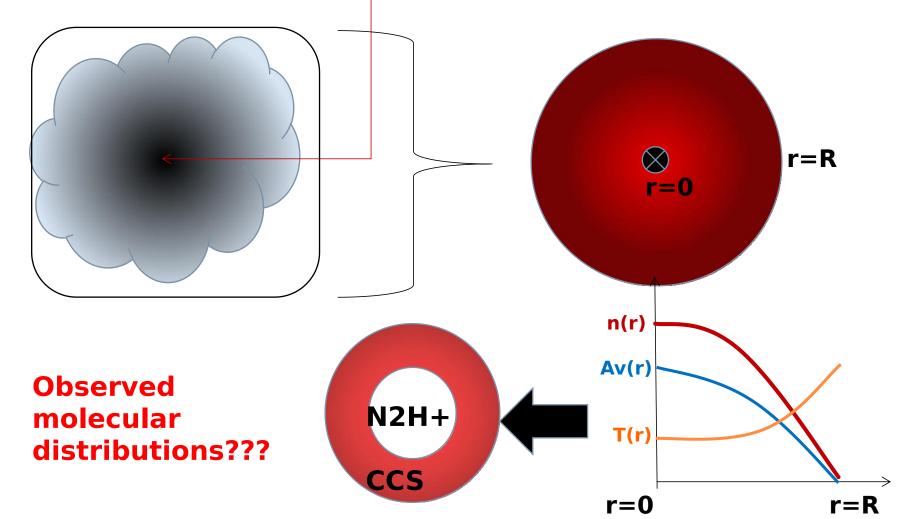
(2) to constrain physical parameters.

- H3+ + N2 -> N2H+ + H2, N2H+ + CO -> HCO+
- strong depletion of molecules such as CCS, HC3N
- For COMS, CH3OH is mainly formed on dust grains and then released by some non-thermal desorption mechanism in cold dark clouds.

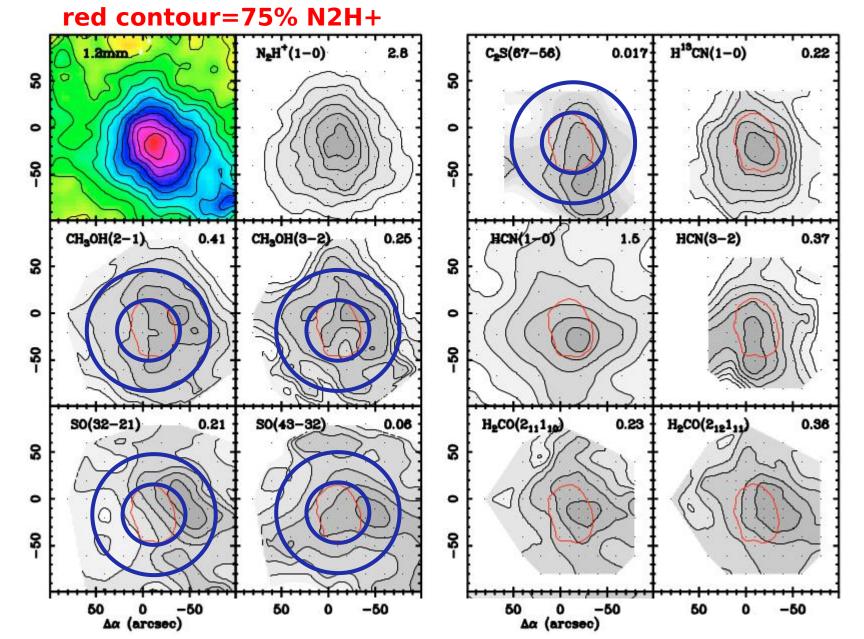

gas-grain chemical model

Gas-phase:

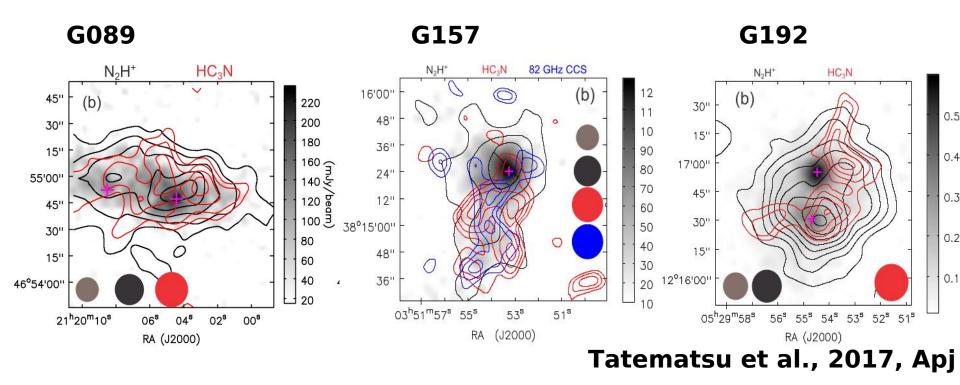
$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = \sum_{l,m} k_{lm} n_l n_m - n_i \sum_{i \neq l} k_l n_l + k_i^{\mathrm{des}} n_i^s - k_i^{\mathrm{acc}} n_i$$
dust surface:


$$\frac{\mathrm{d}n_i^s}{\mathrm{d}t} = \sum_{l,m} k_{lm}^s n_l^s n_m^s - n_i^s \sum_{i \neq l} k_l^s n_l^s - k_i^{\mathrm{des}} n_i^s + k_i^{\mathrm{acc}} n_i$$

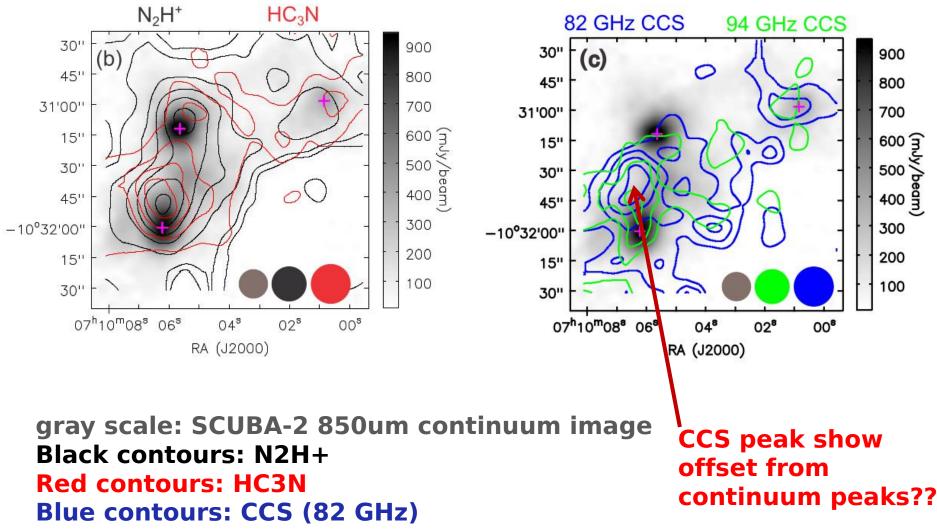
single-point gas-grain chemical model


Observations .vs. models???

n(0),Av(0),T(0)Single-point model


L1571B core

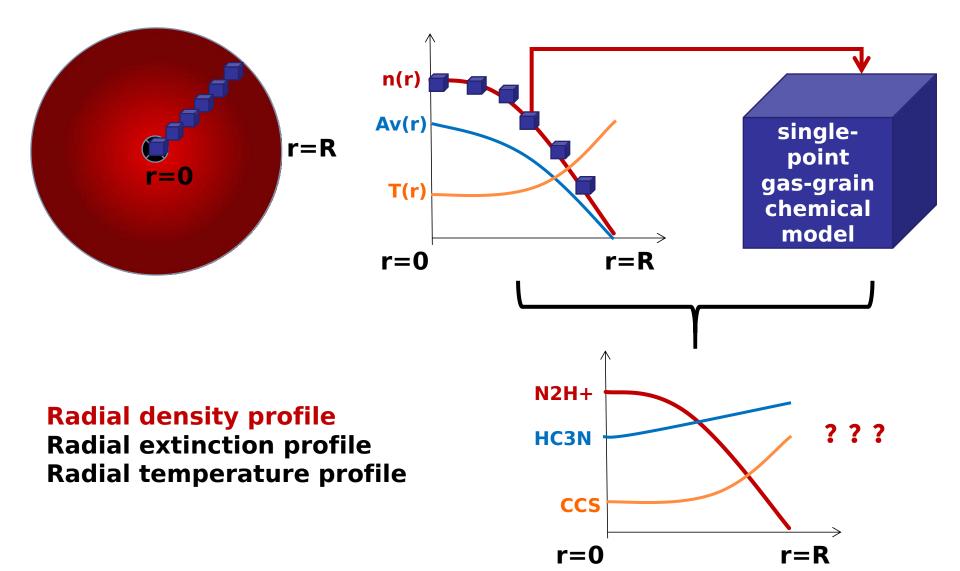
Tafalla et al., 2006, A&A 455, 577–593


Irregular distributions in some sources in our survey (SCOPE, Tie liu et al., 2018)

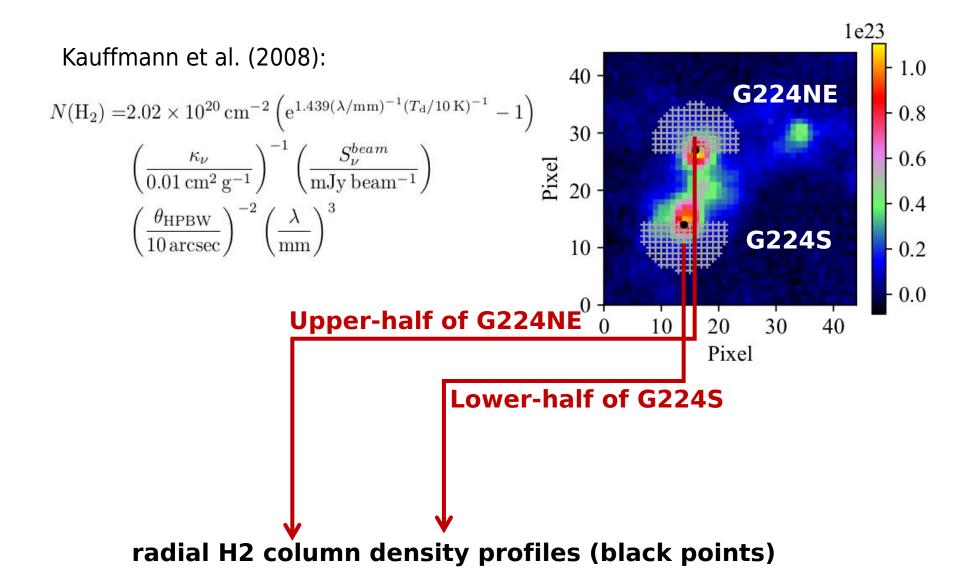
(Planck cold clump: Td<15K, nH>1e4 cm⁻³)

gray scale: SCUBA-2 850um continuum image Black contours: N2H+ Red contours: HC3N Blue contours: CCS

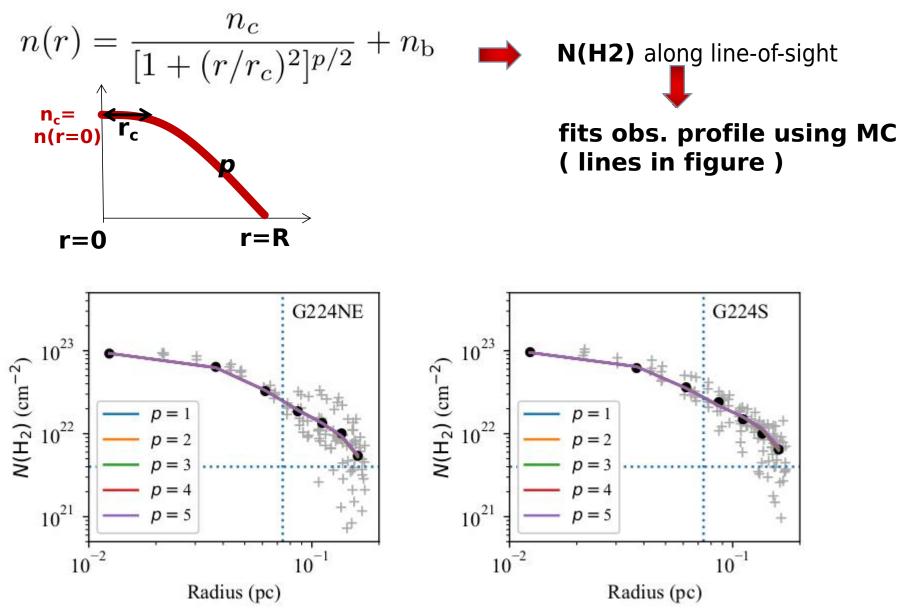
G224.4-0.6



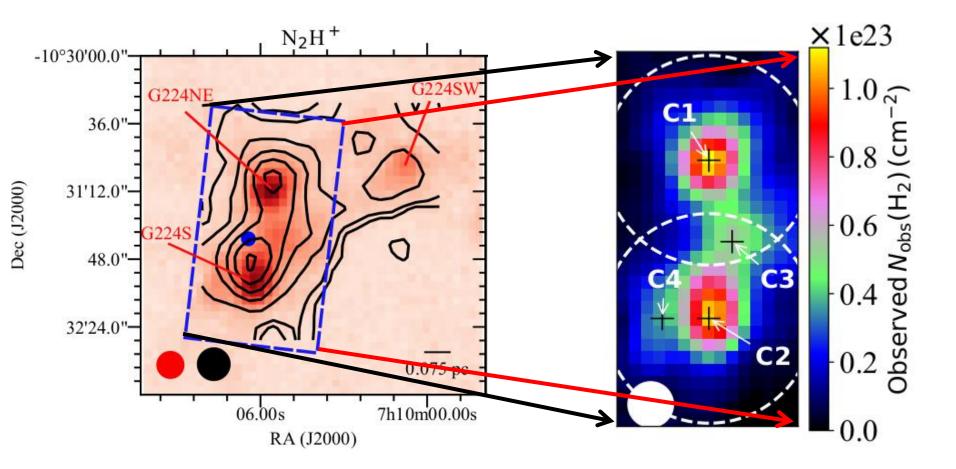
Green contours: CCS (94GHz)


• How to solve this problem???

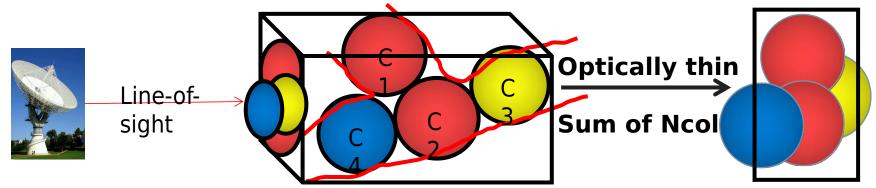
Submitted to ApJ. Title:Three dimensional projection effects on chemistry in a Planck galactic cold clump

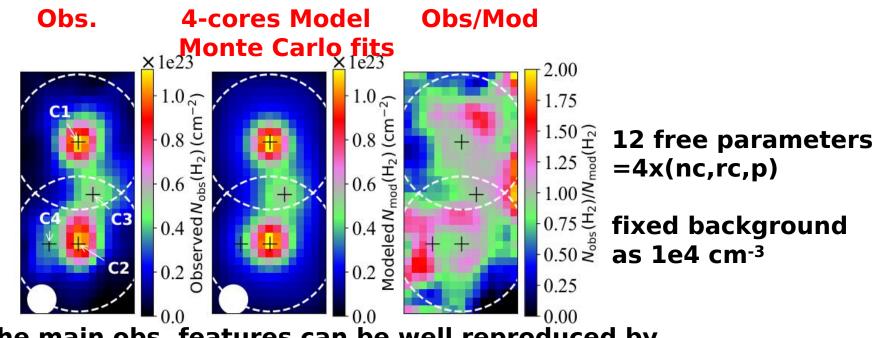

To do chemical model for cloud core, we need ????

SCUBA-2 850um -> H2 column density map

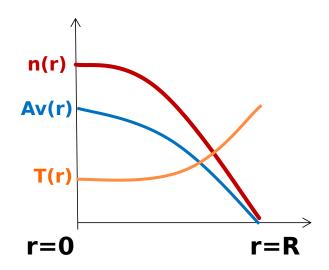


Fits to radial H2 column density profile using Plummer-like density structure



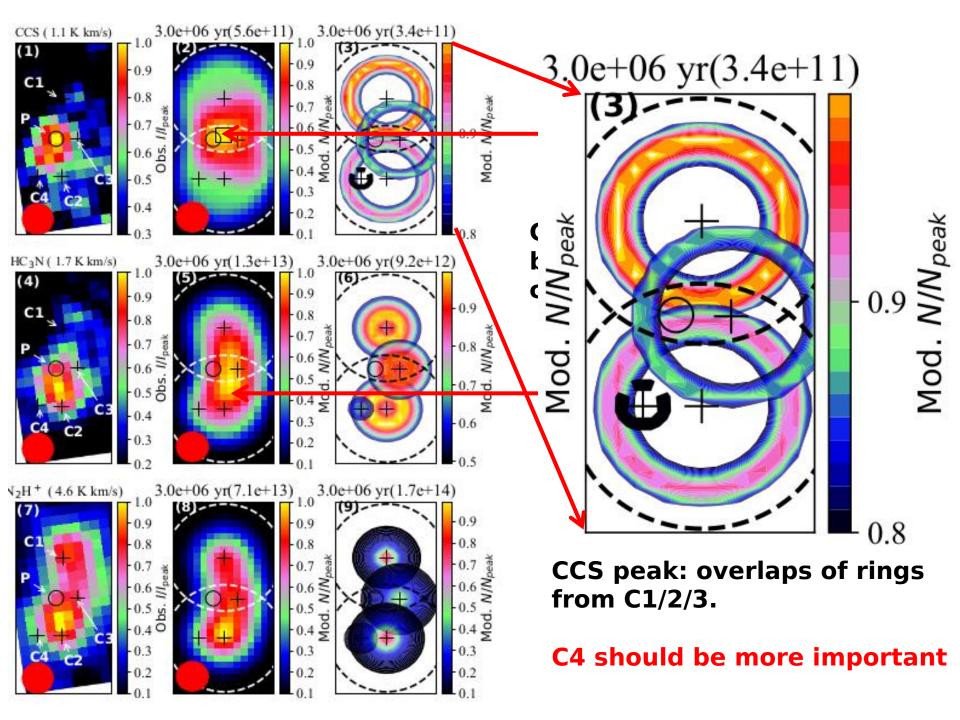

				Large beam
p	n_c	r_c	$n_{ m b}$	n _c =
	(cm^{-3})	(cm)	(cm^{-3})	n(r=0) rc
,	\wedge	G224NE		N N N N N N N N N N N N N N N N N N N
1	4.4e+08	$1.3e{+}13$	$2.8e{+}03$	
2	3.8e+08	$1.4e{+}15$	$1.2e{+}04$	r=0 r=R
3	2.2e+08	$8.1e{+}15$	$1.5e{+}04$	
4	5.0e+07	$2.4e{+}16$	$1.6e{+}04$	background:
5	2.2e+07	4.0e + 16	$1.7e{+}04$	n _b ~1e4 cm-3
		G224S		
1	4.3e+08	$1.3e{+}13$	6.2e + 03	
2	3.9e+08	$1.3e{+}15$	1.6e+04	
3	2.9e+08	$6.6e{+}15$	$1.9e{+}04$	
4	1.3e+08	$1.6e{+}16$	2.0e+04	
5	5.9e+07	2.8e+16	$2.1e{+}04$	
				2-D fitting

2-D fitting to H2 column density map 4-cores are needed.


Comparison between Obs. and Mod. H2 map

The main obs. features can be well reproduced by the four-cores model within a factor of 2.0.

For each core



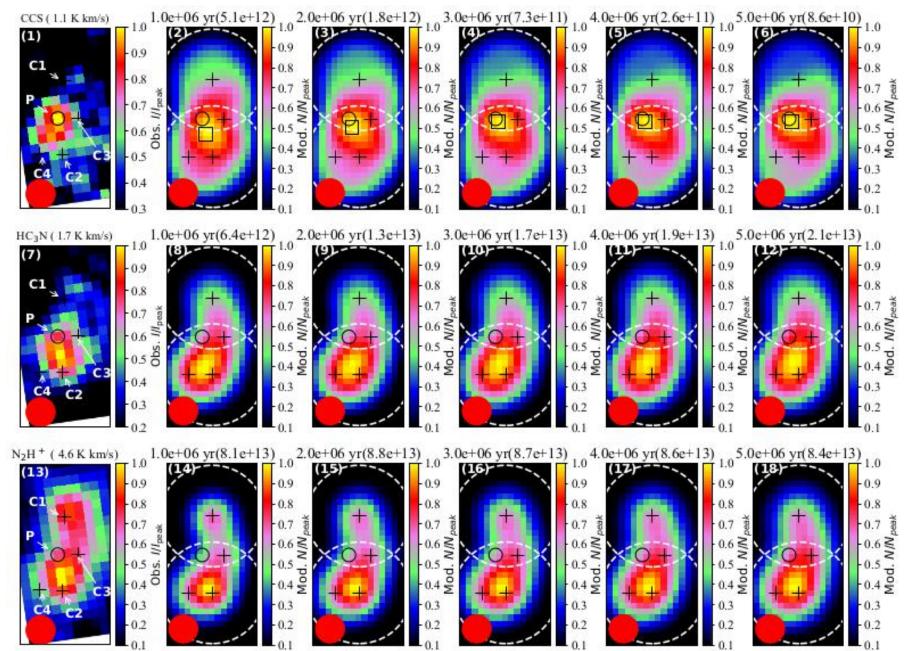
 $A_{\rm V} = N({\rm H}_2)/2.2 \times 10^{21} \,({\rm mag})$

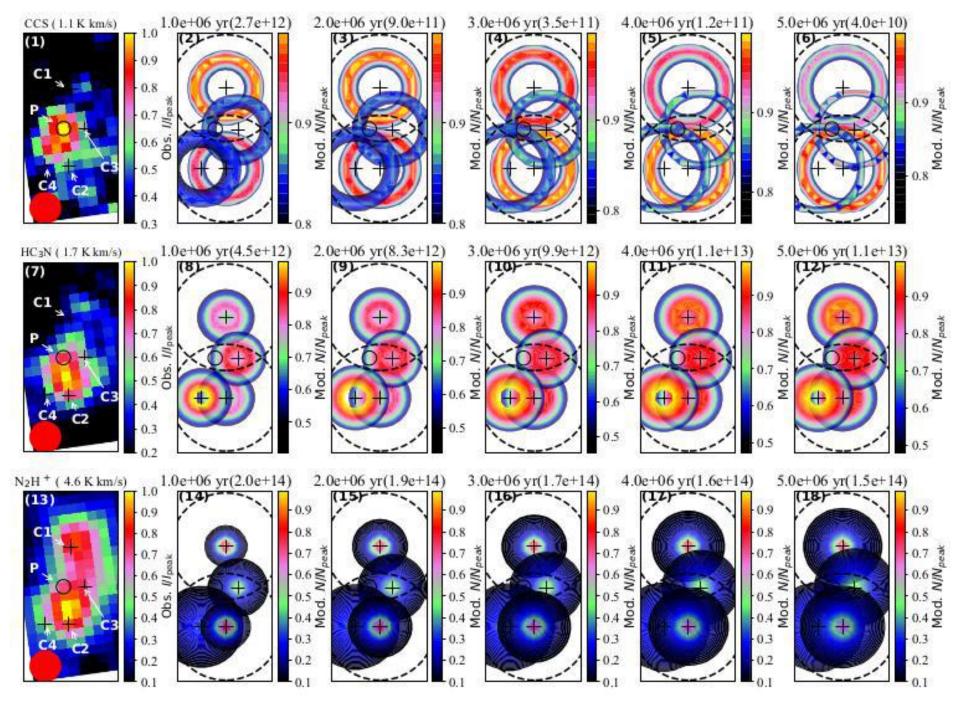
Güver & Özel (2009)

 $T_d(A_V) = [11 + 5.7 \tanh(0.61 - \log(A_V))] \chi_{uv}^{1.0/5.9}$ Hocuk et al. (2017)

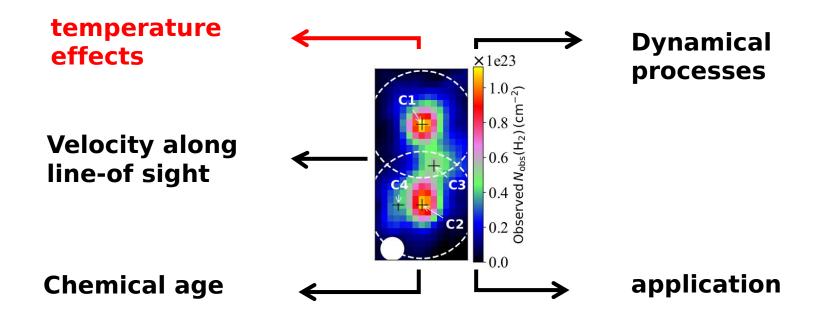
species	$n_i/n_{ m H}$	species	$n_i/n_{ m H}$	dust-to-gas mass ratio=0.01
H_2	0.5	S^+	8.00×10^{-8}	
He	9.00×10^{-2}	Fe^+	3.00×10^{-9}	
C^+	1.20×10^{-4}	Na^+	2.00×10^{-9}	(e.g. Wakelam & Herbst 2008;
Ν	7.60×10^{-5}	Mg^+	7.00×10^{-9}	Hincelin et al. 2011;
0	2.56×10^{-4}	Cl^+	1.00×10^{-9}	-
Si ⁺	8.00×10^{-9}	P^+	2.00×10^{-10}	Furuya et al. 2011; Majumdar et al. 2017).

×1e23 ×1e23 2.00 · 1.0 _ (1.0 <u>~</u> -1.75 Modeled N^{mod}(H²) (cm⁻ 8.0 9.0 9.0 9.0 - 1.50 (²H)^{pow}/(²H)^{so}/(²H)^{sg}/(² initial core density model **C3** By checking 0.25 physical を 0.0 0.0 0.00 chemical ×1e23 ×1e23 structures 2.00 (1.0 _N 1.0 2 1.75 -0.8 0.0 0.6 0.0 0.4 0.0 0.2 0.0 0.2 0.0 1.50 (²H)^{pow}/(²H)^{sqo}/(Observed N_{obs}(H₂) (cm **Adjusted core** density model **C**3 **C2** 0.25

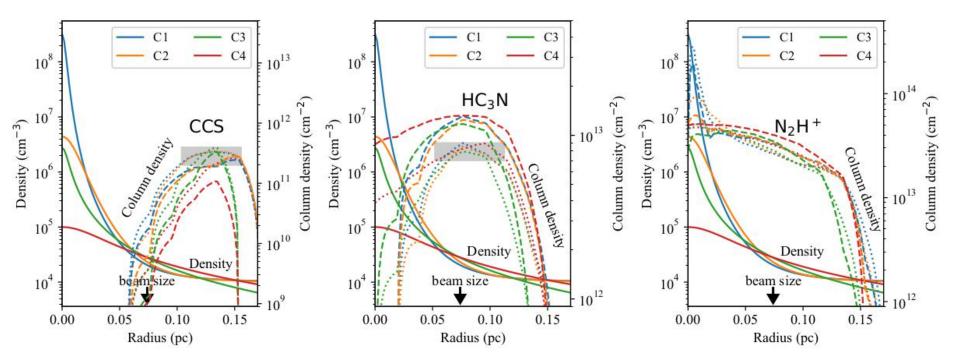

0.0


0.0

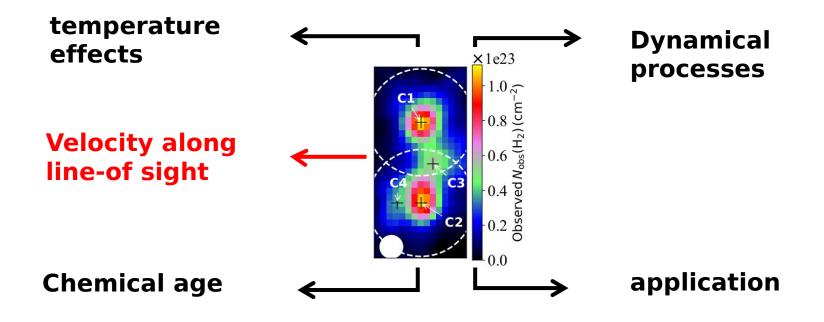
0.00


		initial core density model			adjusted core density model		
	Center coordinate (J2000)	p	$n_c \ ({ m cm}^{-3})$	$r_c \ (m cm)$	p	$n_c \ (\mathrm{cm}^{-3})$	r_c (cm)
C1	07:10:05.7, -10:31:10.7	3.6	$3.2{ imes}10^8$	$1.3{\times}10^{16}$	3.6	$3.2{ imes}10^8$	$1.3{ imes}10^{16}$
C2	07:10:06.2, -10:32:00.3	4.3	$5.9{ imes}10^6$	6.2×10^{16}	4.3	$\textbf{4.4}{\times}10^6$	6.2×10^{16}
C3	07:10:05.3, -10:31:36.7	1.8	$2.8{ imes}10^6$	$1.7{\times}10^{16}$	1.8	$2.8{ imes}10^6$	$1.7{\times}10^{16}$
C4	07:10:07.3, -10:31:57.7	3.1	$1.9{ imes}10^5$	$7.3 imes 10^{16}$	1.5	1.0×10^5	1.1×10^{17}

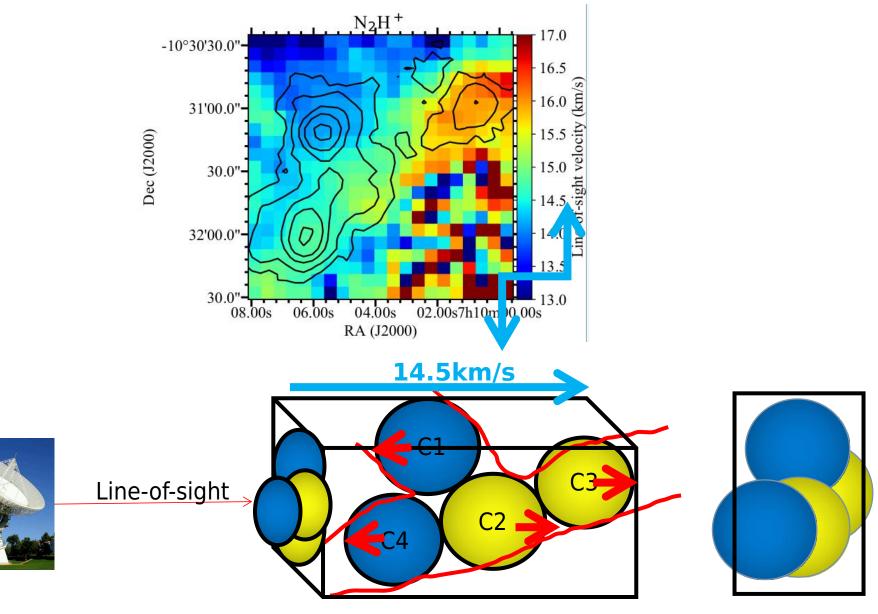
Modeled molecular distributions using adjusted core density model

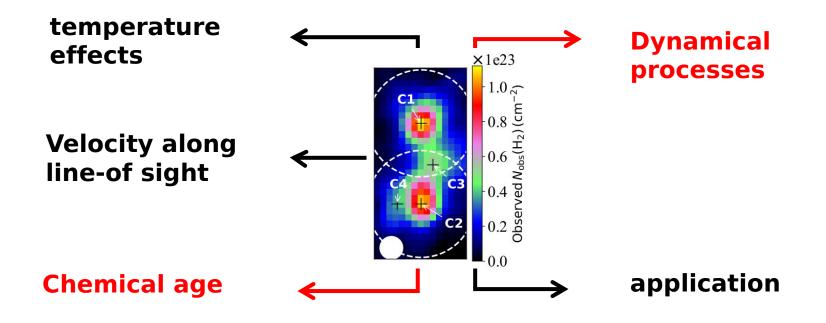


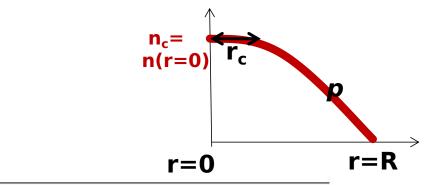
Discussions



temperature effects

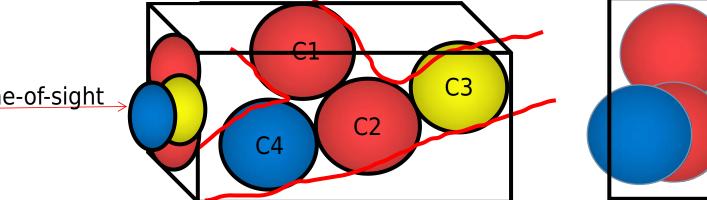

solid line:density profile dotted line: model with Td(r)=Td(Av) dashed line: model with Td(r)=10K


Discussions



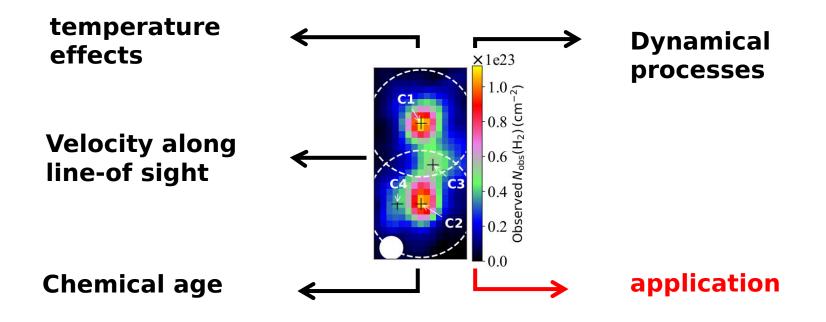
Line-of-sight velocity map (Moment 1 map)

Discussions

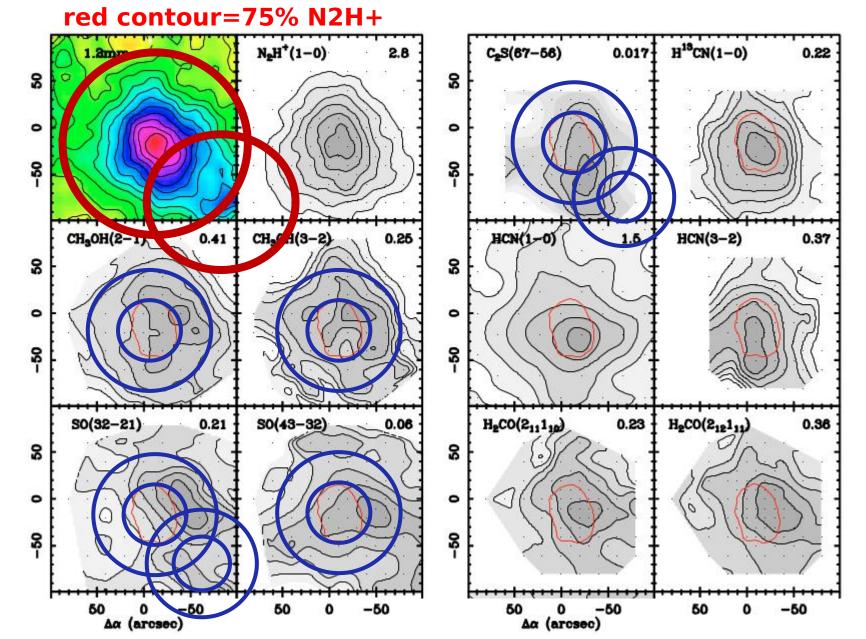

species	$n_i/n_{ m H}$	species	$n_i/n_{ m H}$
H ₂	0.5	S^+	$8.00 imes 10^{-8}$
He	9.00×10^{-2}	Fe^+	3.00×10^{-9}
C^+	1.20×10^{-4}	Na^+	2.00×10^{-9}
Ν	7.60×10^{-5}	Mg^+	$7.00 imes 10^{-9}$
0	2.56×10^{-4}	Cl^+	$1.00 imes 10^{-9}$
Si^+	8.00×10^{-9}	\mathbf{P}^+	2.00×10^{-10}

initial physical conditions

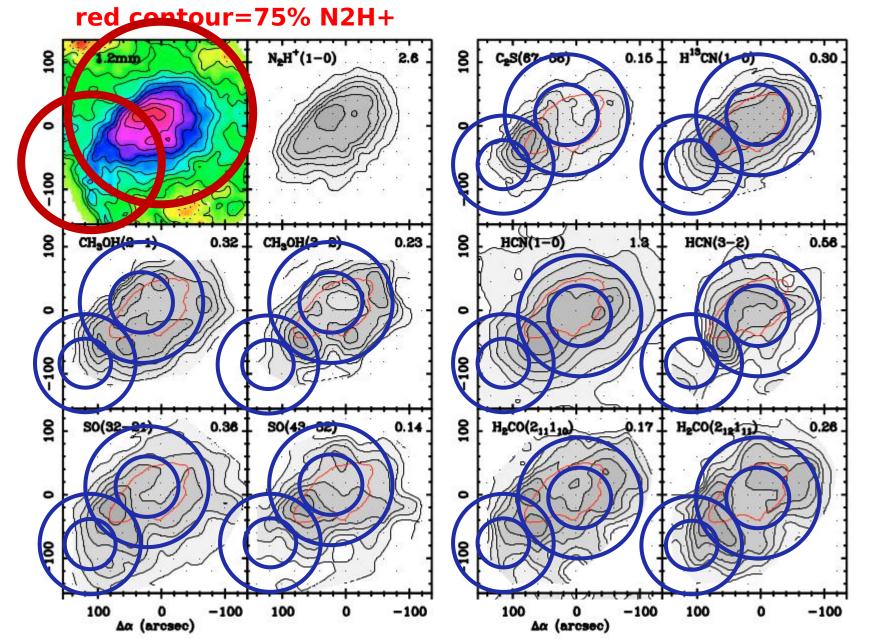
initial chemical conditions



Line-of-sight


Turbulence Magnetic field

Discussions


L1571B core

Tafalla et al., 2006, A&A 455, 577–593

L1498 core

Tafalla et al., 2006, A&A 455, 577-593

Conclusions

- The three-dimensional projection effects commonly exist in space can be approached by multiple-cores models.
- The overlapping effects of ring of molecules (e.g. CCS and HC3N) are the key factors for their peak offsets to dust peaks.
- The multiple-cores approach has great potential to explain many observed molecular distributions in cloud dense cores.

Thank you for your attention