Properties of metal-poor transitional and degenerate brown dwarfs

Zenghua Zhang PSL fellow Paris Observatory, Meudon http://mygepi.obspm.fr/~zzhang/

6 August 2019

ADS library Scan me

Outline

- Theories of brown dwarfs (BD) and early discoveries
- The identification and classification of L subdwarfs
- Physical properties of ultracool subdwarfs
- Transition zones related to nuclear burnings (H, Li, D).
- Properties of transitional BDs (T-BD) and degenerate BDs (D-BD)

The HR diagram

Theoretical predictions

- Without convection, the time-scale for stars <0.1 Msun to reach radiative equilibrium is >100 Gyr.
- Hayashi (1962), low-mass pre MS stars are fully convective during contraction.
- Kumar 1963ab, HBMM is between 0.07 M $_{\odot}$ for Pop I (0.09 M $_{\odot}$ Pop II).
- Hayashi & Nakano (1963), HBMM ~ 0.08 M $_{\odot}$ for Pop I.

GD 165B: an L4 companion to a DA4 WD

Becklin & Zuckerman 1988; Kirkpatrick et al. 1993, 1999

PPL 15 AB: a M6.5 lithium BD binary

Teide 1: a M8 dwarf in the pleiades

Rebolo, Zapatero Osorio & Martin 1995 Rebolo+96, Li line.

GL229 B: a T7 companion to a M1 dwarf

PRC95-48 · ST Scl OPO · November 29, 1995 T. Nakajima and S. Kulkarni (CalTech), S. Durrance and D. Golimowski (JHU), NASA

Optical 7. Η 0 THE REAL f_ν (mJy) Log CH₄ CH. _ Н,О Н,О Н,О Н,О CO Cs I CH. CH. 1.25 µ 1.0 µ 1.66 µ 2.5μ -2 1.2 0.8 0.6 0.2 0.4 $1/\lambda \ (\mu^{-1})$

8

Nakajima+1995; Oppenheimer+1995

Spectral classification

- OBAFGK
- M: CaH, TiO. (Bessell 1991; Kirkpatrick, Henry, & McCarthy 1991)
- L: alkali lines, oxide, hydride (FeH). (Kirkpatrick et al. 1999; Martin et al. 1999)
- T: Methane (CH4), Water, broad potassium (KI). (Burgasser et al. 2002,2003)
- Y: Ammonia (NH3). (Cushing et al. 2011; Kirkpatrick et al. 2012)
- Oh, Be A Fine Girl/Guy Kiss My Lips Tonight, Yahoo!

The low-mass populations

2MASS 0249 c (Dupuy+18) & Beta Pictoris b (Chilcote+17)

Brightness

11

Hour-day variable periods

- Stanimir et al. 2015,
- Biller 2017

Luhman 16B; Crossfield et al. 2014

Radio emissions

- Berger et al. 2001;
- Hallinan et al. 2008

LSR J1835+3259; Hallinan et al. 2015 ¹³

Impacts in other fields

- Sensitive to initial mass function.
- Test stellar/substellar formation theories.
- Help to characterize exoplanets.
- As exoplanet hosts.

Evolutionary tracks and energy supply (Burrows+93, 97)

Metal-poor brown dwarfs

- Halo or thick disk populations, high velocities and proper motions
- Low opacity, higher maximum mass.
- Stronger metal hydride (FeH), weaker metal oxide (CO, VO, TiO), and suppressed NIR flux.

Spectral classification

- Prefix + Core + Suffix for Metallicity + Temperature and clouds + Gravity. (Kirkpatrick 2005)
- Burgasser et la. 2007
- Kirkpatrick et al. 2010

Spectral classification of L subdwarfs (Primeval-I)

- dL, [Fe/H] > -0.3 Thin
- sdL, -1.0 < [Fe/H] < -0.3 Thick
- esdL, -1.7 < [Fe/H] < -1.0 Halo
- usdL, [Fe/H] < -1.7 Halo

Colours of L subdwarfs (Primeval-I, III, IV)

The most metal-poor substellar object (Primeval-II)

RAS@200

Home

Search

News & Press

Publications

About the RAS

Membership

RAS Policy

Library

News archive

News for kids

Events & Meetings

Awards and Grants

Education & Careers

Friends of the RAS

I want information on: Select a subject

Information for:

Select a role

GO

EWASS / NAM 2018

ROYAL ASTRONOMICAL SOCIETY

Advancing Astronomy and Geophysics

YOU ARE HERE: Home > News & Press > News and Press > News 2017 > Astronomers identify purest, most massive brown dwarf

NEWS & PRESS

Astronomers identify purest, most massive brown dwarf

Last Updated on Thursday, 23 March 2017 16:22

Published on Friday, 24 March 2017 06:00

• SDSS J0104+15

- usdL1.5
- 2450 K
- [Fe/H] = -2.4
- 0.086 M_{\odot}

An international team of astronomers has identified a record breaking brown dwarf (a star too small for nuclear fusion) with the 'purest' composition and the highest mass yet known. The object, known as SDSS J0104+1535, is a member of the so-called halo – the outermost reaches - of our Galaxy, made up of the most ancient stars. The scientists report the discovery in *Monthly Notices of the Royal Astronomical Society*.

An artist's impression of the new pure and massive brown dwarf. Credit: John Pinfield. Click for a full size image

The research team was led by Dr ZengHua Zhang of the Institute of Astrophysics in the Canary Islands. He said: "We really didn't expect to see brown dwarfs that are this pure. Having found one though often suggests a much larger hitherto undiscovered population - I'd be very surprised if there aren't many more similar objects out there waiting to be found."

Brown dwarfs are intermediate between planets and fully-fledged stars. Their mass is too small for full nuclear fusion of hydrogen to helium (with a consequent release of energy) to take place, but they are usually significantly more massive than planets.

Located 750 light years away in the constellation of Pisces, SDSS J0104+1535 is made of gas that is around 250 times purer than the Sun, so consists of more than 99.99% hydrogen and helium. Estimated to have formed about 10 billion years ago, measurements also suggest it has a mass equivalent to 90 times that of Jupiter, making it the most massive brown dwarf found to date.

It was previously not known if brown dwarfs could form from such primordial gas, and the discovery points the way to a larger undiscovered population of extremely pure brown dwarfs from our Galaxy's ancient past.

10 Gyr Teff isochrones with different metallicity

M-T plot for 9 models with different metallicities at 10^{10} yr

Primeval-II

The boundaries between Stars, T-BDs, and D-BDs are around 7.9% and 6.5% M_{\odot} at Z_{\odot} (Primeval-IV, Zhang+18)

L/T transition number densitiy

 10^{-3}

10-4

 10^{-5}

LO

L2

SpT⁻¹

Φ(SpT) [pc

0.01-0.15 M_{Sun}, simulation by Adam Burgasser

Properties of L subdwarfs (Primeval-IV)

Properties of T subdwarfs (Primeval-VI)

- Spectral type Colour
- Colour colour
- Spectral type absolute magnitude
- Colour absolute magnitude

Table 6. T5–9 subdwarf discovery capability of *Euclid* and *WFIRST*, *WISE*, LSST, and *CSS-OS* surveys. Limiting magnitudes (m_{limit}) in AB system are converted to Vega system according to table 7 of Hewett et al. (2006). Note the actual discovery number of halo T subdwarfs could be lower (see the last paragraph of Section 6).

Name	Survey	Filter	Coverage (deg ²)	m _{limit} (AB)	<i>m</i> _{limit} (Vega)	<i>M</i> _{sdT7.5} (AB)	M _{sdT7} (Vega)	d _{sdT7} (pc)	Thick disc	Halo
Euclid	Wide	slitless	15000	H = 19.5	18.121	_	16.95	17	4	0
Euclid	Wide	Y	15000	24.0	23.366	_	17.41	155	3174	272
Euclid	Wide	J	15000	24.0	23.062	_	16.52	203	7151	613
Euclid	Wide	Н	15000	24.0	22.621	_	16.95	136	2147	184
WFIRST	HLS	slitless	2000	H = 21.5	20.121	_	16.95	43	9	1
WFIRST	HLS	Y	2000	26.7	26.066	_	17.41	538	17640	1512
WFIRST	HLS	J	2000	26.9	25.962	_	16.52	773	52395	4491
WFIRST	HLS	H	2000	26.7	25.321	_	16.95	472	11931	1023
WFIRST	HLS	(K_s)	2000	25.5	23.600	_	17.38	175	611	52
WISE	AllWISE	W1	all sky	_	17.9	_	15.90	25	37	3
WISE	AllWISE	W2	all sky	_	16.4	_	13.17	44	203	17
WISE	CatWISE	W1	all sky	_	18.55	_	15.90	34	91	8
WISE	CatWISE	W2	all sky	_	17.05	_	13.17	60	499	43
LSST	Single-visit	Z	18000	23.3	_	21.78	_	20	8	1
LSST	Single-visit	У	18000	22.1	_	19.94	_	27	20	2
LSST	Coadded	Z.	18000	26.1	_	21.78	_	73	398	34
LSST	Coadded	У	18000	24.9	_	19.94	_	98	965	83
CSS-OS	Wide	Z	17500	25.3	_	21.78	_	51	128	11
CSS-OS	Wide	У	17500	24.7	_	19.94	_	90	711	61

A halo L3 subdwarf with prograde eccentric orbit in the Galactic plane (Primeval-V)

Metallicity of M and L subdwarfs (Zhang submitted, Primeval VII)

- Zeta index is good for M0-M5 subdwarfs
- Zeta index is not valid for ultracool subdwarfs (<0.1 M ⊙) due to their dusty atmospheres and favouring H₂O and metal hydride (CaH, FeH) under higher pressure (gravity).

Primeval very low-mass stars and brown dwarfs series on the MNRAS

- I. Six new L subdwarfs, classification and atmospheric properties
- II. The most metal-poor substellar object
- III. The halo transitional brown dwarfs

ADS library

- IV. New L subdwarfs, Gaia astrometry, population properties, and a blue brown dwarf binary
- V. A halo L3 subdwarf with prograde eccentric orbit in the Galactic plane
- VI. Population properties of metal-poor degenerate brown dwarfs
- The Substellar Transition Zone: A Stretched Temperature Canyon in Brown Dwarf Population due to Unsteady Hydrogen Fusion

A Chinese poetry (ci) for Chile

《鹊桥仙·智利》 智利路远,国土狭长,大地富含宝藏。 铜硝钼锂铼金银,葡萄酒、柠檬佳酿。 智利山高,气候晴朗,这里星空最亮。 天文学者来相聚,望远镜、宇宙天窗。

Immortal at the Magpie Bridge (tune) · Chile

Chile is far, the land is long, and full of treasures. Copper/nitre/molybdenum/lithium/rhenium/gold/silver, excellent wine, and pisco sour. Chile has high montains, fine climate, and the best starry night. Astronomers are gathered here, for the telescopes, windows to the Universe.

Gracias!