Estrellas

Simón Casassus Astronomía, Universidad de Chile

http:://www.das.uchile.cl/~simon

- I Transfer Radiativo
- II Propiedades generales
- III Atmósferas estelares
- IV Interiores estelares
- V Evolución estelar

Part V

Evolución Estelar

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno

Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Plan

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Plan

Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas

masivas Cúmulos estelares

Restos estelares

1.1- Cosmoquímica

 La cosmoquímica es el estudio del enriquecimiento químico del universo, en particular a través de la composición química e isotópica de meteoritos.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

Restos estelares

1.1- Cosmoquímica

Dentro de las meteoritas se encuentran pequeñas 'inclusiones', que son granos extra-solares atrapados en la matriz carbonacea de meteoritos primordiales. Ejemplos reproducidos de MacPherson & Thiemens, PNAS, 2001:

Calcium Aluminum Inclusions (CAIS) en Allende.

Miscroscopía de transmisión de electrones de un ejemplo de grano de polvo presolar de grafito, que encierra una inclusión de TiC, formada en la atmósfera de una gigante roja.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

Restos estelares

1.1- Cosmoquímica

 Ejemplo de mediciones de razón isotópica de O extraídas de polvo de estrella pre-solar (reproducido de Clayton & Nitller, 2004, AR&A):

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Plan

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

La energía de ligazón de un núcleo es

$$\Delta E = (m_{\rm componentes} - m_{\rm conjunto})c^2. \tag{1}$$

 Por ejemplo, la energía de ligazón por nucleon, para He, es:

$$\frac{\Delta E}{A} = rac{1}{4} (2m_p + 2m_n - m_{^4\mathrm{He}})c^2 \approx 7.1 \, MeV.$$
 (2)

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Nucleosíntesis	
Cosmoquímica	
Fusión nuclear	
Quema de hidrógeno	
Nucleosíntesis avanzada	
Evolución post	
secuencia principal	
Fin de la secuencia principal	
Estrellas de masas intermediarias	
Evolución de estrellas masivas	
Cúmulos estelares	
Restos estelares	
Enanas blancas	
Colapso estelar	
Estrellas de neutrones	
Agujeros negros estelares	

- Vemos entonces que la fusión nuclear es exotérmica hasta los llamados "elementos del peak de Fe" (iron-peak elements).
- Por ejemplo, al principio de la cadena proton-proton,

$$\mathrm{H}^{1} + \mathrm{H}^{1} \longrightarrow \mathrm{H}^{2} + \boldsymbol{e}^{+} + \nu_{\boldsymbol{e}}, \tag{3}$$

que arroja 0.420 MeV solo en diferencias de masas entre producto y constituyentes. Sin embargo, el positron se aniquila con un electron produciendo $2m_ec^2 = 1.022$ MeV en radiación γ . También el neutrino se lleva ~ 0.263 MeV. Entonces, la reacción en la Ec. 3, arroja 1.179 MeV neto que contabilizar en $\epsilon(r)$.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

Restos estelares

- El detalle de la interacción nuclear es compleja, pero destaca el rol del efecto túnel, que facilita que los núcleos superen la barrera Coulombiana.
- La barrera Coulombiana hace que la fusión entre núcleos más pesados, con más grandes Z, requiere de más altas temperaturas.

Nucleosíntesis Cosmoquímica

Eusión nuclear

.12

- El impacto de una reacción nuclear se resume en secciones eficaz de colisiones σ(v) entre pares de núcleos (i.e. 1 y 2), y en tasas de reacciones
 Γ₁₂ = n₁n₂ ∫ dvf(v)vσ(v) (i.e. # de reacciones por u. de volumen).
- La tasa de generación de energía por fusión para un canal de reacción dado es entones $\epsilon_{12} = \Gamma_{12}\Delta E_{12}$, donde ΔE_{12} es la energía liberada en una reacción de fusión exotérmica.
- La existencia de niveles cuánticos en el núcleo conducen a resonancias, donde aumenta σ(v) si la energía cinética relativa coincide con la energía de un nivel excitado del núcleo.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno

Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

Restos estelares

- Posibles temas de presentaciones:
 - El meteorito de Allende.
 - La nebulosa de la Hélice (Helix Nebula)
 - La nebulosa del Cangrejo (Crab Nebula)

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Plan

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzar

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear

Quema de hidrógeno

Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

• La quema de hidrógeno es lo que caracteriza una estrella, por oposición a cuerpos de masa inferior, con $\sim 13 M_{jup} < M_{\star} < \sim 80 M_{jup}$, llamados enanas cafés, que si bien logran quemar D no alcanzan las temperaturas necesarias para la quema de hidrógeno, porque sus contracción gravitacional es detenida por electrones degenerados (ver Cap. D).

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno

Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

- La quema de hidrógeno ocurre a través de 2 canales de reacciones: la cadena protón-protón y el ciclo CNO.
- La principal cadena p-p ocurre culmina con la reacción

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno

(4)

Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones

Agujeros negros estelares

 Es interesante notar el rol de la interacción débil en el primer eslabón en la cadena p-p, responsable por la emisión del neutrino:

$$\mathrm{H}^{1} + \mathrm{H}^{1} \longrightarrow \mathrm{H}^{2} + \boldsymbol{e}^{+} + \nu_{\boldsymbol{e}},$$

y que corresponde a una sección eficaz mucho más débiles que las típicas para interacción fuerte.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno

(5)

Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

 Existen otros dos canales para la cadena p-p, que representan en total ~29% (p-p II) y ~1% (p-p III) de la tasa de reacción total. La cadena p-p II es:

Nucleosíntesis Cosmoquímica Fusión nuclear

Quema de hidrógeno

Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

Agujeros negros estelares

 Resumen de las cadenas p-p (reproducido de Carrol & Ostlie):

Nucleosíntesis		
Cosmoquímica		
Fusión nuclear		
Quema de hidrógeno		
Nucleosíntesis avanzada		
Evolución post		
Secuencia principal		
Fin de la secuencia principal		
Estrellas de masas intermediarias		
Evolución de estrellas masivas		
Cúmulos estelares		
Restos estelares		
Enanas blancas		

En total, las cadenas p-p llevan a la reacción neta:

$$4\mathrm{H}^{1} \longrightarrow \mathrm{H}_{e}^{4} + 2e^{+} + 2\nu_{e} + 2\gamma, \qquad (6)$$

- De la misma manera que en Sec. 2 y Ec. 3, la energía liberada por fusión en la reacción de Ec. 6 es $\Delta E = (m_{\text{componentes}} m_{\text{conjunto}})c^2 = 24.7 \text{ MeV}$. Incluyendo la aniquilación de los positrones, y restando la energía de los neutrinos, en neto las cadenas pp arrojan 26.7 MeV.
- Es interesante notar que los neutrinos se llevan 2% de la energía de pp-I, 4% de pp-II, y 28% de pp-III.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno

Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

 El cíclo CNO empieza a generar más energía que las cadenas p-p a ~ 210⁷ K, es decir para estrellas ≥ 1.5 M_☉.

.22

 En estado estacionario, en el ciclo CNO, los núcleos de C, N y O actúan de catalizadores para la reacción neta:

$$4\mathrm{H}^{1} \longrightarrow \mathrm{H_{e}}^{4} + 2e^{+} + 2\nu_{e} + 3\gamma, \,,$$

muy similar a p-p.

 Sin embargo, en presencia de convección (ver "hot-bottom-burning" mas adelante), es posible que la mezcla de material descompense la reacción y se enriquezca la estrella en ¹³C y en ¹⁵N.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

(7)

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

• El principal cíclo CNO es :

$${}^{12}_{6}C + {}^{1}_{1}H \rightarrow {}^{13}_{7}N + \gamma$$

$${}^{13}_{7}N \rightarrow {}^{13}_{6}C + e^{+} + \nu_{e}$$

$${}^{13}_{6}C + {}^{1}_{1}H \rightarrow {}^{14}_{7}N + \gamma$$

$${}^{14}_{7}N + {}^{1}_{1}H \rightarrow {}^{15}_{8}O + \gamma$$

$${}^{15}_{8}O \rightarrow {}^{15}_{7}N + e^{+} + \nu_{e}$$

$${}^{15}_{7}N + {}^{1}_{1}H \rightarrow {}^{12}_{6}C + {}^{4}_{2}He.$$

• Pero en la práctica existen 3 ramas (ver Figura reproducida de Leblanc, a continuación).

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada Evolución post secuencia principal Fin de la secuencia

principal Estrellas de masas

intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

Agujeros negros estelares

 Los modelos de interiores estelares en la secuencia principal sin evolucionar, es decir los modelos de 'Zero Age Main Sequence' (ZAMS), reproducen muy bien los diagramas HR observados, así como la relación masa-luminosidad observada.

Modelo de ZAMS (fig. reproducida de Carrol & Ostlie)

Observaciones de luminosidades estelares (fig. reproducida de Carrol & Ostlie)

Nucleosíntesis Cosmoquímica Eusión nuclear

Quema de hidrógeno

Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

• La relación masa-luminosidad es cercana a

$$rac{L(M)}{L_{\odot}} \sim \left(rac{M}{M_{\odot}}
ight)^3$$

Nucleosíntesis Cosmoquímica Fusión nuclear

Quema de hidrógeno

Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

(8)

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

Agujeros negros estelares

Plan

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

- El final de la secuencia principal se caracteriza por el agotamiento de H en el corazón estelar.
- Si ~10% de la masa estelar se quema durante la secuencia principal, el tiempo de la etapa de fusión de H es

$$\tau_{\rm ms} = \frac{0.1 \, M_{\star}}{4 m_{\rm p}} \frac{\Delta E}{L_{\star}} \approx \frac{\left(\frac{M_{\star}}{M_{\odot}}\right)}{\left(\frac{L_{\star}}{L_{\odot}}\right)}$$

(9)

- donde $\Delta E = 26.7 \,\text{MeV}$ es la energía que arroja una reacción de fusión de 4p en He.
- Este tiempo calza bastante bien con las predicciones para el tiempo total en la secuencia principal para el Sol, de \sim 10 Gyr.

Nucleosíntesis

Cosmoquímica

Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post

secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

 Dada la relación masa-luminosidad Ec. 8, el tiempo de vida estelar en la secuencia principal disminuye rápidamente para estrellas más masivas:

$$\tau(M) \sim \frac{M_{\star}}{L_{\star}} \propto \frac{M_{\star}}{M_{\star}^3} \propto \frac{1}{M_{\star}^2}.$$
 (10)

• Según esta relación, una estrella O con 10 M_{\odot} vivirá solo \sim 10 Myr.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

Restos estelares

• Luego del agotamiento de H en el corazón estelar, una momentánea perdida de sustento hidroestático conduce a la contracción gravitacional del corazón, regida por el teorema del virial $2E_{K} = -E_{G}$:

$$2\frac{M_c}{\mu m_H}kT_c \sim \frac{3}{5}\frac{GM_c^2}{R_c},$$
(11)

donde M_c y R_c son la masa y el radio del corazón estelar.

- Vemos que el enriquecimiento en He en el corazón, que conlleva un aumento en peso molecular promedio μ, disminuye el sustento termal.
- T_c aumentará a medida que se contraerá el núcleo: $T_c \propto \frac{1}{R_c}$, a no ser que el corazón se encuentre primero con el piso de la presión de electrones degenerados. Este freno de presión impide el aumento de *T* para estrellas con $M_{\star} < 0.5 M_{\odot}$.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

Restos estelares

 Con un poco más de temperatura se pueden iniciar nuevas reacciones de fusión, partiendo por la quema de He, y siguiendo con Z más grandes y barreras Coulombianas más fuertes a medida que aumenta T.

Burning phase	Elements produced	Central temperature
Н	Не	$6.0 \times 10^7 \mathrm{K}$
He	С, О	$2.0 \times 10^8 \mathrm{K}$
С	O, Ne, Mg	$9.0 \times 10^8 \mathrm{K}$
Ne	O, Mg, Si	$1.7 \times 10^9 \mathrm{K}$
0	Si, S	$2.3 \times 10^9 \mathrm{K}$
Si	Fe-peak	$4.0 \times 10^9 \mathrm{K}$

(tabla reproducida de Leblanc)

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

- La combustión de He en el corazón, y el aumento de T en las capas estelares vecinas, conduce también a la quema de H en esas capas ("shell burning").
- La fusión de He ocurre mediantes las siguientes reacciones:

$$He^{4} + He^{4} \longrightarrow Be^{8} + \gamma$$
(12)

$$Be^{8} + He^{4} \longrightarrow C^{\star 12} + \gamma$$

$$C^{\star 12} \longrightarrow C^{12} + \gamma$$

 Este conjunto de reacciones se resume en la reacción triple-α:

$$3\mathrm{He}^4 \longrightarrow \mathrm{C}^{12} + 3\gamma,$$
 (13)

que conduce entonces a la nucleosíntesis de C.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

Restos estelares

• Luego del agotamiento de He en el corazón estelar, si aún no se alcanza la presión de electrones degenerados (es decir si $M > 8 M_{\odot}$), sigue entonces la quema de C por una serie de reacciones que cobran más importancias a más altas T:

$$C^{12} + He^{4} \longrightarrow O^{16} + \gamma$$

$$C^{12} + C^{12} \longrightarrow Ne^{20} + He^{4}$$

$$C^{12} + C^{12} \longrightarrow Mg^{24} + \gamma$$
(14)

 Y luego del agotamiento de C en el corazón, sigue la fusión de Ne, en especial a través de:

$$\mathrm{Ne^{20} + He^4} \longrightarrow \mathrm{Mg^{24}} + \gamma.$$

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

Agujeros negros estelares

• Siguiendo la quema de Ne, ocurre la de O:

• Luego sigue la quema Si:

$${
m Si^{28}+He^4}\longrightarrow {
m S^{32}+\gamma}$$

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

(15)

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

Agujeros negros estelares

 La secuencia de nucleosíntesis por fusión, hasta el peak de Fe, culmina con capturas sucesivas de partículas α, por ejemplo con:

$$\begin{array}{rcl} \mathrm{S}^{32} + \mathrm{He}^{4} & \longrightarrow & \mathrm{Ar}^{36} + \gamma, \\ \mathrm{Ar}^{36} + \mathrm{He}^{4} & \longrightarrow & \mathrm{Ca}^{40} + \gamma, \\ \mathrm{Ca}^{40} + \mathrm{He}^{4} & \longrightarrow & \mathrm{Ti}^{44} + \gamma, \\ \mathrm{Ti}^{44} + \mathrm{He}^{4} & \longrightarrow & \mathrm{Cr}^{48} + \gamma, \\ \mathrm{Cr}^{48} + \mathrm{He}^{4} & \longrightarrow & \mathrm{Fe}^{52} + \gamma. \end{array}$$

 Los elementos mas pesados que Fe se forman por capturas de los neutrones libres producidos, por ejemplo, en algunos canales de la quema de C y de O. Estos neutrones decaen en protones por n → p + e⁻ + v
e, incrementando así Z. Esta nucleosíntesis se llama el "*s-process*" cuando ocurre durante la evolución estelar post-MS, por diferencia con el "*r-process*" que ocurre durante la explosión de supernova.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

(16)

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares
1.4- Nucleosíntesis avanzada

- Posibles temas de presentaciones:
 - Comparar la estructura interna de Jupiter con la de una enana café.
 - Modelo del interior de un precursor de Supernova tipo II.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Aquieros negros estelares

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal

Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

B Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Aquieros neoros estelares

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

2- Evolución post secuencia principal

• Podemos distinguir 3 regímenes de masas estelares distintos: estrellas con $M_{\star} \lesssim 0.5 M_{\odot}$ no alcanzan las temperaturas necesarias para la quema de He. Estrellas con $0.5 \lesssim M_{\star} \lesssim 8 M_{\odot}$ fusionan He pero no pasan a los siguientes niveles de fusión. Estrellas con $M_{\star} \gtrsim 8 M_{\odot}$ pasan por todos los niveles de fusión.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Aquieros neoros estelares

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Aquieros neoros estelares

• Modelos detallados de la vida del Sol muestran que está a media vida. En esta figura se compara la abundancia de hidrógeno en función del radio estelar, X(r), para t = 0, 1.39, 3.02, 4.53, 5.75, 8.07 Gyr. La curva con t = 4.53 Gyr representa el Sol en su edad actual.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

- El calentamiento progresivo de la base de la envoltura estelar (i.e. la región sin fusión nuclear) resulta en un aumento de la densidad de energía que se transporta convectivamente a la superficie con un gradiente de temperatura empinado. El fenómeno es similar al de una atmósfera estelar convectiva con base a altas temperaturas (pero sin geometría plano-paralela).
- Siguiendo el agotamiento de H en el corazón estelar, estrellas 0.5 ≤ M_{*} ≤ 8 M_☉ ascienden la rama de gigante roja en el diagrama H.R..
- Luego, las estrellas de masas intermediarias entran a la rama horizontal, donde pueden cruzar la región de inestabilidades de pulsación estelar ("instability strip").
- Finalmente, entran a la rama gigante asíntotica ("Assymptotic Giant Branch", AGB), con radios de hasta 1 au, y terminan su evolución en la etapa de nebulosa planetaria.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Aquieros negros estelares

• Por ejemplo, para el Sol:

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

 Es interesante notar la similitud entre la evolución pre-MS de estrellas en la Hayashi track, con envolturas convectivas y en contracción de Kelvin-Helmholtz, con la rama gigante rojas:

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones

2.2- Estrellas de masas intermediarias- Nebulosas planetarias

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

- Posibles temas de presentaciones:
 - El descubrimiento de los pulsares por Jocelyn Bell, y sus mecanismos de pulsación.
 - Vela-X pulsar-wind-nebula y comparación con Crab Pulsar.
 - Cyg X1.
 - ¿Existen diamantes estelares, es decir enanas blancas de C enteramente cristalizado?
 - Fusión de estrellas ("Common envelope evolution" y "stellar mergers").

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Aquieros neoros estelares

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal

Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones

 Al cuminar su evolución, la fusión nuclear dentro de una estrella super-gigante ocurre con una estructura en capas de cebolla "onion-like".

Nucleosíntesis Cosmoquímica Fusión nuclear

Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

- Al salir de la MS, el recorrido en el HR varía según la masa ZAMS.
- La evolución post-MS es ~1/10 mas corta que la MS.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

- Una vez agotado el combustible nuclear en el corazón estelar, este se contrae y se sustenta por presión de electrones degenerados.
- Cuando la masa del corazón superar el límite de Chandrasekhar 1.43 M_{\odot} , el corazón se hace inestable y el colapso gravitacional supera la presión degenerada de electrones.
- El colapso ocurre en minutos en un evento de supernova.
- El gas es ultra-relativista y la temperatura es suficientemente alta para que fotones γ fisionen los núcleos de Fe en sus constituyentes (n, p).
- Se recombinan los protones y electrones via $p + e^- \longrightarrow n + \nu_e$, liberando energía en neutrinos.
- Si la masa del corazón de neutrones es inferior a $\sim 3 M_{\odot}$, se forma una estrella de neutrones, sustentada por la presión de neutrones degenerados. Si es superior, se forma un agujero negro.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Aquieros negros estelares

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal

Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

B Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzarla

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones

 Las estrellas se forman en cúmulos, en regiones de formación estelar. Estos cúmulos de estrellas jóvenes se llaman "cúmulos abiertos", contienen típicamente entre 10² y 10³ M_☉. Se van difundiendo en el disco galáctico en un par de revoluciones Galácticas (~ 10⁸ yr). Ejemplo: Pléyades.

Nucleosíntesis Cosmoquímica

Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones

Stars of the Pleiades

A detailed look at the brightest stars in the cluster known as Messier 45

ASTEROPE

DESIGNATION: 21 Tauri MAGNITUDE: +5.64 SPECTRAL TYPE: B8 RA 03h 45m 54.4s DEC +24° 33' 17"

The name Asterope/Sterope has also been applied jointly to 21 Tauri and neighbour 22 Tauri, which is of magnitude +6.43, type A0, 0.04 degrees away, Both 21 and 22 Tauri are main sequence stars.

MEROPE **DESIGNATION: 23 Tauri** MAGNITUDE: +4.17 SPECTRAL TYPE: B6 RA 03h 46m 19.6s DEC +23° 56' 54"

A Beta Cephei type variable with a range of no more than 0.01 of a magnitude. The Pleiades nebulosity is at its brightest around Merope, and is listed in the catalogue of nebulae as IC 349.

NAME: TAYGETE **DESIGNATION: 19 Tauri** MAGNITUDE: +4.29 SPECTRAL TYPE: 86 RA 03h 45m 12.5s DEC +24° 28' 02"

Taygete (also known as Taygeta) is a spectroscopic binary with a period of 1313 days. There is an eighth magnitude companion, Taygete B, at a separation of 69 arcseconds.

CELAENO **DESIGNATION: 16 Tauri** MAGNITUDE: +5.44 SPECTRAL TYPE: B7 RA 03h 44m 48.2s DEC +24° 17' 32"

A bluish-white sub-giant between Electra and Taygete also associated with the legend of the lost Pleiad, but again without any apparent justification, as it shows no current sign of variability.

PLEIONE DESIGNATION: 28 Tauri

or BU Tauri MAGNITUDE: +5.0 var SPECTRAL TYPE: B8V A noh 49m 11 2s DEC +24" 08" 12"

A blue-white B-type dwarf 440 lightyears from Earth. It is a Gamma Cassioneia-type variable whose brightness fluctuates unpredictably between +4.77 and +5.50.

ATLAS

DESIGNATION: 27 Tauri MAGNITUDE: +3.62 SPECTRAL TYPE: 88 RA 03h 49m 97s DEC +24º 03' 12"

A triple system. The primary component (A) is a very close binary, magnitudes +4.1 and +5.6. There is a fainter companion, magnitude +6.8, 0.4 arcsecs away, giving a real separation of at least 50AU.

ALCYONE **DESIGNATION: 25 Taur** MAGNITUDE: +2.86 SPECTRAL TYPE: B7

RA 03h 47m 291s DEC +24º 06' 18"

A very close eclipsing binary, separation 0.031 arcsecs. It has three orbiting companions: B (mag +8, separation 117 arcsecs), C (mag +8, 181 arcsecs) and D (mag +8.7, 191 arcsecs).

MAIA DESIGNATION: 20 Taur

MAGNITUDE: +3.86 SPECTRAL TYPE: 87 RA 03h 45m 49 6s TEC +24º 22' 04"

A bluish-white sub-giant 660 times as luminous as the Sun. Suspicions of slight variability have never been confirmed. The Pleiades nebulosity, at its brightest round Merope, is also prominent in this region.

ELECTRA DESIGNATION: 17 Tauri MAGNITUDE: +3.70 SPECTRAL TYPE: B6 RA 03h 44m 52 5s DEC +24º 06' 48"

Like Alcyone, Electra is classed as a bluish-white sub-giant. It has been associated with the legend of the lost Pleiad but without justification, as it shows no sign of variability

Nucleosíntesis Cosmoquímica Eusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masiyas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

 Otro tipo de cúmulos estelares son los cúmulos globulares, que son mini-galaxias elípticas, restos del proceso de condensación de la Vía Láctea y con edades ≳ 10 Gyr. Ejemplo: 47 Tuc.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Aquieros negros estelares

• La edad de los cúmulos se puede inferir con sus diagramas H.R., usando el "turn-off point" de la secuencia principal, ya que de Ec. 10, el tiempo en la secuencia principal es $\tau(M) \sim \frac{1}{M_{\star}^2}$. Ejemplo: M3 (Renzini & Fusi Pecci, 1988, ARA&A, 26, 199), con un "turn-off" en 1 M_{\odot} .

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

 Ejemplo moderno con GAIA, combinando 14 cúmulos globulares:

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Aquieros neoros estelares

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares Enanas blancas

Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar Estrellas de neutrones

- Ejemplo: Sirius B.
- Masas ~ 1M_☉, radios ~1 R_⊕ ~ 0.01 R_☉, gravedad superficial ~ 40 000 la terrestre.
- Composición interna: C y O (excepto productos de evolución binaria, que puede dejar corazón de He).
- Masa límite para sustento por presión de electrones degenerados: 1.43 M_{\odot} masa de Chandrasekhar.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

- Este límite superior deriva de la física del gas de electrones degenerados. El desarrollo está bien resumido en el Cap. 6 de A.C. Phillips ("The Physics of Stars").
- Vimos en Cap. D que en un gas degenerado, los electrones llenan todos los niveles de energía disponibles. Si Φ(p) es el # de estados con momentum inferior a p,

$$\Phi(p) = 2V \frac{1}{h^3} \frac{4}{3} \pi p^3, \qquad (17)$$

entonces el número total de electrones en una caja dura de volumen V es

$$N = \Phi(p_F) = V \frac{8\pi}{3h^3} p_F^3,$$
 (18)

donde p_F es el momentum correspondiente al nivel de Fermi (el último nivel de energía ocupado, $p_F(E_F)$).

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar Estrellas de neutrones Aquieros negros estelares

• Podemos reescribir Ec. 18 con

$$p_F = \left(rac{2n}{8\pi}
ight)^{1/3}h$$

• La energía interna es entonces:

$$E_{\mathcal{K}} = \int_0^{p_{\mathcal{F}}} \epsilon(p) g_s \frac{V}{h^3} 4\pi p^2 dp,$$

 $\operatorname{con} g_S = 2.$

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

(19)

(20)

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

Los electrones son no-relativistas cuando v ≪ c, o sea cuando p_F = mv ≪ mc. O sea, usando Ec. 19, cuando sus densidades son n = ^N/_V ≪ (^{m_ec}/_h)³. En ese caso obtenemos la energía interna E_K sustituyendo ε(p) = ^{p²}/_{2m_e}, y la presión usando P = ²/₃ ^{E_K}/_V (ver Cap. D):

$$P = K_{\rm NR} n^{5/3}, \text{ con } K_{\rm NR} = \frac{h^2}{5m} \left[\frac{3}{8\pi}\right]^{\frac{5}{3}}$$
 (21)

Redefinimos la densidad de electrones con

$$n_e = Y_e \frac{\rho_c}{m_H},\tag{22}$$

donde ρ_c es la densidad en el centro de la estrella y Y_e es el número de electrones por nucleon ($Y_e \sim (1 + X/2)$). La Ec. 21 se escribe entonces

$$P = K_{NR} \left[\frac{Y_e \rho_c}{m_H} \right]^{\frac{5}{3}}.$$
 (23)

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar Estrellas de neutrones

 Por otro lado podemos estimar la presión central usando la ecuación de equilibrio hidrostático y una aproximación para la forma del gradiente de presión. Partimos con

$$\frac{\partial P(r)}{\partial r} = -\frac{\rho(r)GM(r)}{r^2}$$

Cerca del núcleo $M(r) \approx \rho_c \frac{4\pi}{3} r^3$, y

$$rac{\partial P(r)}{\partial r} = -rac{4\pi}{3}
ho_c^2 Gr$$

En el modelo de Clayton, aproximamos

$$\frac{\partial P}{\partial r} \approx -\frac{4\pi}{3} G \rho_c^2 r e^{-\left(\frac{r}{a}\right)^2}, \qquad (26)$$

donde a es un parámetro libre.

• Dado que en la superficie $\frac{\partial P}{\partial r} \approx -\frac{GM_{\star}}{r^2}\rho(r) \sim 0$, cuando $\rho(r) \sim 0$, la aproximación de Clayton tiene el comportamiento esperado en r = 0 y $r = R_{\star}$ (tarea: justificación, ver Cap. 5 de Phillips).

Nucleosíntesis

(24)

(25)

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones

La presión P(r) se obtiene integrando Ec. 26, y usando las condiciones de borde. Luego usamos de nuevo Ec. 25 para obtener M(r). Si suponemos ahora que el grueso de la masa estelar está en el rango donde r ≪ a, entonces (tarea: ver Cap. 5 de Phillips):

$$P_c \sim \left[\frac{\pi}{36}\right]^{1/3} GM_\star^{2/3} \rho_c^{4/3}.$$
 (27)

 Igualamos esta presión en el centro estelar con la del sustento de electrones degenerados, Ec. 23, para estimar la densidad en el centro estelar (tarea, Cap. 6 de Phillips):

$$\rho_c \approx \frac{3.1}{Y_e^5} \left[\frac{M_{\star}}{1.85 M_{\odot}} \right]^2 \frac{m_H}{(h/m_e c)^3}.$$
(28)

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Aquieros negros estelares

- Es interesante notar que $\rho_c \propto M_{\star}^2$. Esto implica que el radio de las enanas blancas disminuye con su masa: $R_{\star} \propto \frac{1}{M_{\star}}^{1/3}$.
- Por ejemplo, Sirius B, con $M_{\star} = 1.05 M_{\odot}$, tiene $R_{\star} = 0.0074 R_{\odot}$, mientras que 40 Eri B, $M_{\star} = 0.48 M_{\odot}$, tiene $R_{\star} = 0.0124 R_{\odot}$.
- Un efecto similar se observa en enanas café.

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

3.2- Colapso estelar

• Si aumenta la densidad de electrones, y alcanza $n \sim \left(\frac{m_e c}{h}\right)^3$, entonces los electrones son relativistas y su energía cinética es muy superior a su energía en reposo. La ecuación de estado correspondiente se obtiene usando $\epsilon(p) \sim pc$ para el cálculo de E_K , y luego con $P = \frac{1}{3} \frac{E_K}{V}$ (ver Cap. B):

$$P = K_{\rm UR} n^{4/3}, \ {
m con} \ K_{\rm UR} = rac{hc}{4} \left[rac{3}{8\pi}
ight]^{rac{1}{3}}.$$

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

(29)

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

3.2- Colapso estelar

 Igualamos P_c en Ec. 27 con el sustento de electrones degenerados relativistas, P en Ec. 29, para concluir que la masa estelar a partir de la cual los electrones son relativistas, y el corazón estelar es inestable, es:

$$M_{\rm Ch} \approx 4.3 \, Y_e^2 M_{\odot}.$$
 (30)

• Vemos que si $X \sim 0$ en el corazón, $M_{\rm Ch} = 1.075 M_{\odot}$.

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

3.2- Colapso estelar

 La expresión en Ec. 32 supone que el gas de electrones es enteramente relativista, lo cual aplica solo a los electrones cerca del nivel de Fermi. Un cálculo mas preciso se obtiene usando

$$\epsilon^2 = m_e^2 c^4 + p^2 c^2, \qquad (31)$$

en Ec. 20, y luego de un poco de análisis (ver Cap. 5 de Phillips), se llega a

$$M_{\rm Ch} \approx 5.8 \, Y_e^2 M_{\odot},$$
 (32)

o sea $M_{\rm Ch} = 1.45 \, M_{\odot}$ si X = 0 en el corazón.

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones
3.2- Colapso estelar

 La masa de Chandrasekhar es uno de los descubrimientos puramente teóricos con mas impacto en astrofísica (Chandrasekhar 1931, "The Maximum Mass of Ideal White Dwarfs". ApJ 74, 81), resumido en esta cita:

"The life history of a star of small mass must be essentially different from the life history of a star of large mass. For a star of small mass the natural white-dwarf stage is an initial step towards complete extinction. A star of large mass cannot pass into the white-dwarf stage and one is left speculating on the other possibilities."

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

3.2- Colapso estelar

- En una estrella masiva, a medida que la combustión de Si en un cascarón deposita cenizas de Fe en el corazón inerte, se llegará a superar la masa de Chandrasekhar, y el corazón será ultra-relativista y por ende inestable ante colapso gravitacional.
- Cuando un cuerpo se contrae, energía gravitacional se convierte en energía interna, lo cual puede iniciar nuevas reacciones exotérmicas de fusión nuclear que se oponen a la contracción. La caldera nuclear sostiene la estrella.
- Pero en el colapso de un corazón inerte, la ausencia de combustible nuclear es agravada con la activación de mecanismos de enfriamiento. Fotones γ fisionan los núcleos de Fe, llevándolos a una sopa de n y p (reacciones endotérmicas), y los p se recombinan con e⁻:

$$p + e^- \longrightarrow n + \nu_e.$$
 (33)

 La neutralización de los protones es endotérmica, y los neutrinos se escapan del corazón llevando energía también.

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

3.2- Colapso estelar

 El consiguiente colapso es catastrófico ya que nada sostiene el corazón: es una caida libre que ocurre en un tiempo (ver Cap. B):

$$au_{ff} = \left[\frac{3\pi}{32G\rho_c}\right]^{1/2} \approx 10^{-3} \,\mathrm{s.}$$
 (34)

- Cuando el corazón alcanza densidades cercanas al núcleo atómico, se hace suficientemente compacto como para atrapar los neutrinos. El colapso rebota y se observa la expansión de una onda de choque en la envoltura estelar es decir una supernova, con luminosidades que alcanzan $L_{\star} \sim 10^{10} L_{\odot}$ (equivalente al brillo de una galaxia completa).
- Si la masa del corazón que colapsa es $\lesssim 3 M_{\odot}$ (número incierto), se formará una estrella de neutrones que sale disparada con velocidades $\sim 10^3 \, \mathrm{km \, s^{-1}}$.
- Si la masa es superior, se forma un agujero negro.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

Plan

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelare

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

- Una estrella de neutrones se forma con temperaturas del orden de $\sim 10^{12}$ K, pero se enfría muy rápidamente por liberación de neutrinos a $\sim 10^9$ K (en 1 día), y a $\sim 10^8$ K en 100 años.
- A pesar de parecer altas, estas temperaturas no son suficientes para excitar los neutrones degenerados más arriba de sus niveles de Fermi. En ese sentido, las estrellas de neutrones son *frías*.
- Si suponemos que la estrella de neutrones es una sopa de neutrones, una adaptación del mismo tratamiento para enanas blancas al gas de neutrones permite concluir (ver Sec. 6.3 de Phillips):

$$R_{\star} pprox 13.1 \,\mathrm{km} imes \left(rac{1.85 \,M_{\odot}}{M_{\star}}
ight)^{1/3}.$$
 (35)

Donde notamos una relación $R_{\star}(M_{\star})$ similar a las de las enanas blancas.

Nucleosíntesis

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

3.3- Estrellas de neutrones- Vela Pulsar

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

3.3- Estrellas de neutrones- Crab Pulsar

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

Chandra X-Rays en SNR G21.5-0.9

Gaensler & Slane 2006, ARAA

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

Apr, 1999

Nov, 2000

Dec, 2001

Jan, 2003

Nov, 2003

Sep, 2005

Dec, 2006

Feb, 2008

Destrucción del anillo circunestelar en SN198A (Fransson+ 2015, ApJL, 806, L19).

Nucleosíntesis Cosmoquímica Eusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masiyas Cúmulos estelares

Bestos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

IC 443 SNR - composite Chandra+VLA (Fransson+ 2015, ApJL, 806, L19).

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

Plan

Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

2 Evolución post secuencia principal Fin de la secuencia principal Estrellas de masas intermediarias Evolución de estrellas masivas Cúmulos estelares

3 Restos estelares

Enanas blancas Colapso estelar Estrellas de neutrones Agujeros negros estelares

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

3.4- Agujeros negros estelares

 El tamaño de un agujero negro estelar está dado por el radio de Schwarzschild:

$$R_{\rm sch} = rac{2GM}{c^2}.$$

- *R*_{sch} corresponde al radio del horizonte de eventos, adentro del cual la velocidad de escape es superior a *c*. El cálculo en relatividad general coincide con el cálculo con gravedad Newtoniana.
- Para una estrella de 10 M_{\odot} , $R_{\rm sch} = 30$ km.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

(36)

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

3.4- Agujeros negros estelares- "Stellar black holes"

- X-ray binaries: estrella + black hole
- más conocidos: SS433, Cyg X-1, GRS 1915+105
- más cercanos GRO J1655–40 o A0620–00 (~ 1kpc).

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones

3.4- Agujeros negros estelares- SS433

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

3.4- Agujeros negros estelares- SS433

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas Cúmulos estelares

Restos estelares

Enanas blancas Colapso estelar

Estrellas de neutrones

3.4- Agujeros negros estelares- Jet super-lumínico en GRS1915

Estella MS + ${\sim}15\,M_{\odot}$ black hole.

Nucleosíntesis Cosmoquímica Fusión nuclear Quema de hidrógeno Nucleosíntesis avanzada

Evolución post secuencia principal

Fin de la secuencia principal

Estrellas de masas intermediarias

Evolución de estrellas masivas

Cúmulos estelares

Restos estelares

Enanas blancas

Colapso estelar

Estrellas de neutrones