Radiative Processes

```
Simon Casassus
Astronomía, Universidad de Chile
http:://www.das.uchile.cl/~simon
    | Radiative Transfer
    II Electromagnetic wave propagation
    III Radiation
    IV Scattering and Diffraction
    V Free-free, Synchrotron and Compton Scattering
    VI Radiative Transitions
```


Part II

Electromagnetic wave propagation

Electromagnetic waves
Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium
Constitutive equations
Kramers-Kronig relations
Monochromatic waves

Outline

(1) Electromagnetic waves

Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
(2) Wave propagation in vacuum Spectral decomposition Connection with radiative transfer Polarization Quasi-monochromatic waves

Electromagnetic waves
Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves
(3) Wave propagation in a medium Constitutive equations Kramers-Kronig relations Monochromatic waves

Outline

(1) Electromagnetic waves Maxwell Equations

Electrodynamic potentials Wave equations Poynting's theorem
(2) Wave propagation in vacuum Spectral decomposition Connection with radiative transfer Polarization Quasi-monochromatic waves

Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves
(3) Wave propagation in a medium Constitutive equations Kramers-Kronig relations Monochromatic waves

1.1-Maxwell Equations

- In the MKS system (or S.I.), the equations of electrodynamics are,:

$$
\begin{align*}
\vec{\nabla} \cdot \vec{D} & =\rho, \tag{1}\\
\vec{\nabla} \cdot \vec{B} & =0 \tag{2}\\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t}, \tag{3}\\
\vec{\nabla} \times \vec{H} & =\vec{J}+\frac{\partial \vec{D}}{\partial t} . \tag{4}
\end{align*}
$$

Electromagnetic waves
Maxwell Equations
Electrodynamic potentials Wave equations

Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic waves

Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves

- For linear media, $\vec{D}=\epsilon \vec{E}$ and $\vec{B}=\mu \vec{H}$.
- In vacuum, $\epsilon=\epsilon_{\circ}$ and $\mu=\mu_{\circ}$.

Outline

(1) Electromagnetic waves

Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
(2) Wave propagation in vacuum Spectral decomposition Connection with radiative transfer Polarization Quasi-monochromatic waves

Electromagnetic waves Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves
(3) Wave propagation in a medium Constitutive equations Kramers-Kronig relations Monochromatic waves

1.2-Electrodynamic potentials

- Since $\vec{\nabla} \cdot \vec{B}=0$, we have

$$
\begin{equation*}
\vec{B}=\vec{\nabla} \times \vec{A} . \tag{5}
\end{equation*}
$$

- For \vec{E}, we use Eq. 5 and Eq. 3 :

$$
\begin{gather*}
\vec{\nabla} \times \underbrace{\left(\vec{E}+\frac{\partial \vec{A}}{\partial t}\right)}_{\equiv-\vec{\nabla} \phi}=0, \Rightarrow \\
\vec{E}=-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t} . \tag{6}
\end{gather*}
$$

Outline

(1) Electromagnetic waves

Maxwell Equations
Electrodynamic potentials

Wave equations

Poynting's theorem
(2) Wave propagation in vacuum Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic waves

Electromagnetic waves Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium
Constitutive equations
Kramers-Kronig relations
Monochromatic waves
(3) Wave propagation in a medium Constitutive equations Kramers-Kronig relations Monochromatic waves

1.3-Wave equations

- We want to write equations that determine the electrodynamic potentials \vec{A} and Φ.
- Using the Maxwell Equations in vacuum to connect directly with \vec{E} and \vec{B}, we have

$$
\begin{gather*}
\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{\circ}} \Rightarrow \nabla^{2} \Phi+\frac{\partial}{\partial t}(\vec{\nabla} \cdot \vec{A})=\frac{\rho}{\epsilon_{\circ}} \tag{7}\\
\vec{\nabla} \times \frac{1}{\mu_{\circ}} \vec{B}=\vec{J}+\frac{1}{\epsilon_{\circ}} \frac{\partial \vec{E}}{\partial t} \Rightarrow \\
\nabla^{2} \vec{A}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{A}}{\partial t^{2}}-\vec{\nabla} \underbrace{\left(\vec{\nabla} \cdot \vec{A}+\frac{1}{c^{2}} \frac{\partial \Phi}{\partial t}\right)}_{\text {term for the Lorentz condition }}=-\mu_{\circ} \vec{J} . \tag{8}
\end{gather*}
$$

1.3-Wave equations

- If the term highlighted in Eq. 8 is null, which is called the Lorentz Condition,

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{A}+\frac{1}{c^{2}} \frac{\partial \Phi}{\partial t}=0 \tag{9}
\end{equation*}
$$

then we recover the wave equation for the potentials:

$$
\begin{align*}
& \nabla^{2} \Phi-\frac{1}{c^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=-\frac{\rho}{\epsilon_{o}} \tag{10}\\
& \nabla^{2} \vec{A}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{A}}{\partial t^{2}}=-\mu_{\circ} \vec{J} . \tag{11}
\end{align*}
$$

- To fulfill the Lorentz condition, we use the freedom of gauge:

$$
\begin{equation*}
\vec{A} \longrightarrow \vec{A}^{\prime}=\vec{A}+\vec{\nabla} \Lambda, \tag{12}
\end{equation*}
$$

which leaves invariant $\vec{B}=\vec{\nabla} \times \vec{A}$.

- To also preserve $\vec{E}=-\vec{\nabla} \Phi-\partial \vec{A} / \partial t$, it is necessary that

$$
\begin{equation*}
\Phi \longrightarrow \Phi^{\prime}=\Phi-\frac{\partial \Lambda}{\partial t} \tag{13}
\end{equation*}
$$

1.3-Wave equations

- If \vec{A} and Φ both fulfill the general potential equations (Eqs. 8 and 7), but do not fulfill the Lorentz condition, then we can search for $\Lambda(\vec{x}, t)$ so that \vec{A}^{\prime} and Φ^{\prime} do satisfy the Lorentz condition.
- Injecting Eqs. 12 and 13 in Eq. 9, we reach an equation for $\Lambda(\vec{x}, t)$:

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{A}+\frac{1}{c^{2}} \frac{\partial \Phi}{\partial t}+\nabla^{2} \Lambda-\frac{1}{c^{2}} \frac{\partial^{2} \Lambda}{\partial t}=0 \tag{14}
\end{equation*}
$$

which is essentially a wave equation with a source term, i.e. exactly the type of equations that we will propose solutions for.

Electromagnetic waves

Maxwell Equations

Electrodynamic potentials

1.3-Wave equations

- Independently of the Lorentz condition, we can manipulate the Maxwell equations to reach (tarea):

$$
\begin{align*}
& \nabla^{2} \vec{E}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=-\frac{1}{\epsilon_{\circ}}\left(-\vec{\nabla} \rho-\frac{1}{c^{2}} \frac{\partial \vec{J}}{\partial t}\right), \tag{15}\\
& \nabla^{2} \vec{B}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=-\mu_{\circ} \vec{\nabla} \times \vec{J} \tag{16}
\end{align*}
$$

which are both wave equations with source terms.

- Away from the sources, i.e. in vacuum, both equations become the homogeneous wave equation.

Outline

(1) Electromagnetic waves

Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
(2) Wave propagation in vacuum Spectral decomposition Connection with radiative transfer Polarization Quasi-monochromatic waves

Electromagnetic waves Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium
Constitutive equations
Kramers-Kronig relations
Monochromatic waves
(3) Wave propagation in a medium Constitutive equations Kramers-Kronig relations Monochromatic waves

1.4 Poynting's theorem

- The power exerted by the electromagnetic force $\overrightarrow{\mathcal{F}}=q \vec{v} \times \vec{B}+q \vec{E}$ on a single charge q with velocity \vec{v} is $\vec{v} \cdot \overrightarrow{\mathcal{F}}=q \vec{v} \cdot \vec{E}$.
- The power exerted on the charge density distribution ρ and on the current density distribution $\vec{J}=\rho \vec{v}$ inside a volume $d \mathcal{V}$ is thus

$$
d P=\vec{J} \cdot \vec{E} d \mathcal{V}
$$

- The total power exerted by the (\vec{E}, \vec{B}) field on the charges inside a volume \mathcal{V} is

$$
\begin{equation*}
P=\int_{\mathcal{V}} \vec{J} \cdot \vec{E} d^{3} x \tag{17}
\end{equation*}
$$

1.4- Poynting's theorem

- We want to connect P with the energy stored in the fields. Using the Ampère-Maxwell equation (Eq. 4) we solve for \vec{J}, and following standard handling (tarea),

$$
\begin{equation*}
P=\int_{\mathcal{V}}\left[-\vec{\nabla} \cdot(\vec{E} \times \vec{H})+\vec{H} \cdot(\vec{\nabla} \times \vec{E})-\vec{E} \cdot \frac{\partial \vec{D}}{\partial t}\right] d^{3} x \tag{18}
\end{equation*}
$$

- Now with the induction law, $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$ (Eq. 3),

$$
\begin{equation*}
P=\int_{\mathcal{V}}\left[-\vec{\nabla} \cdot(\vec{E} \times \vec{H})-\vec{H} \cdot \frac{\partial \vec{B}}{\partial t}-\vec{E} \cdot \frac{\partial \vec{D}}{\partial t}\right] d^{3} x \tag{19}
\end{equation*}
$$

1.4 Poynting's theorem

- Remembering that for a linear medium
$\vec{H} \cdot \frac{\partial \vec{B}}{\partial t}=\frac{1}{2} \frac{\partial}{\partial t}(\vec{H} \cdot \vec{B})$, and $\vec{E} \cdot \frac{\partial \vec{D}}{\partial t}=\frac{1}{2} \frac{\partial}{\partial t}(\vec{E} \cdot \vec{D})$, we reach

$$
\begin{equation*}
P=\int_{\mathcal{V}} \vec{J} \cdot \vec{E} d^{3} x=-\int_{\mathcal{V}}\left[\frac{\partial u}{\partial t}+\vec{\nabla} \cdot \vec{S}\right] d^{3} x \tag{20}
\end{equation*}
$$

where we recognize

$$
\begin{equation*}
u=\frac{1}{2} \vec{E} \cdot \vec{D}+\frac{1}{2} \vec{B} \cdot \vec{H}, \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{S}=\vec{E} \times \vec{H} . \tag{22}
\end{equation*}
$$

- For any volume \mathcal{V}, we conclude that

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\vec{\nabla} \cdot \vec{S}=-\vec{J} \cdot \vec{E} . \tag{23}
\end{equation*}
$$

1.4 Poynting's theorem

- In the same way as for energy conservation, Eq. 23, we can also write the equation for the conservation of linear momentum. Newton's 2nd law for the variation of linear momentum $\delta \vec{p}_{\text {mec }}$ inside a volume $\delta \mathcal{V}$ is:

$$
\begin{equation*}
\frac{d \delta \vec{p}_{\mathrm{mec}}}{d t}=\rho \vec{E} \delta \mathcal{V}+\rho \overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{B}} \delta \mathcal{V} \tag{24}
\end{equation*}
$$

- In total,

$$
\begin{equation*}
\frac{d \vec{p}_{\mathrm{mec}}}{d t}=\int_{\mathcal{V}} d^{3} x(\rho \vec{E}+\rho \vec{v} \times \vec{B}) \tag{25}
\end{equation*}
$$

1.4 Poynting's theorem

- Using Maxwell's equation to replace ρ and \vec{J}, we reach (tarea):

$$
\begin{equation*}
\left.\frac{d}{d t}\left(\vec{p}_{\mathrm{mec}}+\vec{p}_{\text {fields }}\right)\right|_{i}=\sum_{j} \int_{\mathcal{V}} d^{3} x \frac{\partial T_{i j}}{\partial x_{j}}, \tag{26}
\end{equation*}
$$

with the following notations:

$$
\begin{equation*}
\vec{p}_{\text {fields }}=\int \epsilon_{0}(\vec{E} \times \vec{B}) d^{3} x=\frac{1}{c^{2}} \int d^{3} x \vec{S} \tag{27}
\end{equation*}
$$

which we associate to the momentum in the fields since it fulfills a similar role as $\vec{p}_{\text {mec }}$, and

$$
\begin{equation*}
T_{i j}=\epsilon_{\circ}\left[E_{i} E_{j}+c^{2} B_{i} B_{j}-\frac{1}{2}\left(\vec{E} \cdot \vec{E}+c^{2} \vec{B} \cdot \vec{B}\right) \delta_{i j}\right], \tag{28}
\end{equation*}
$$

which is the tensor of electromagnetic tensions.

1.4- Poynting's theorem

- For each component i the integrand of $T_{i j}$ can be seen as a divergence, so

$$
\begin{equation*}
\left.\frac{d}{d t}\left(\vec{p}_{\mathrm{mec}}+\vec{p}_{\mathrm{fields}}\right)\right|_{i}=\oint_{\mathcal{S}} \sum_{j} T_{i j} n_{j} d \mathcal{A}, \tag{29}
\end{equation*}
$$

where we recognize a flux integral over the surface bounding the volume \mathcal{V}.

Outline

(1) Electromagnetic waves

Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem

Electromagnetic waves
Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves
(3) Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves

Outline

(1) Electromagnetic waves
 Maxwell Equations
 Electrodynamic potentials
 Wave equations
 Poynting's theorem

(2) Wave propagation in vacuum

 Spectral decompositionConnection with radiative transfer Polarization Quasi-monochromatic waves

Electromagnetic waves
Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium
Constitutive equations
Kramers-Kronig relations
Monochromatic waves
(3) Wave propagation in a medium Constitutive equations Kramers-Kronig relations Monochromatic waves

2.1 Spectral decomposition

- In the absence of sources, if we decompose

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\frac{1}{2 \pi} \int d \omega \vec{E}(\vec{x}, \omega) e^{i \omega t}, \tag{30}
\end{equation*}
$$

the Maxwell equations yield

$$
\left(\nabla^{2}+\mu \epsilon \omega^{2}\right)\left\{\begin{array}{c}
\vec{E} \tag{31}\\
\vec{B}
\end{array}\right\}=0 .
$$

- If ϵ and μ are both real, the solutions are $e^{ \pm i k x}$, with $k=\sqrt{\mu \epsilon} \omega$
- We define the phase velocity $v_{\phi}=\frac{\omega}{k}=\frac{c}{n}$, where $n=\sqrt{\frac{\mu \epsilon}{\mu_{0} \epsilon_{0}}}$ is the refraction index.
- In general,

$$
\left\{\begin{array}{c}
E_{i} \tag{32}\\
B_{i}
\end{array}\right\}=\frac{1}{2 \pi} \int d \omega\left\{\begin{array}{c}
\mathcal{E}_{i} \\
\mathcal{B}_{i}
\end{array}\right\} e^{ \pm i \vec{k} \cdot \vec{x}-i \omega t}
$$

2.1 Spectral decomposition

- We recognize d'Alembert's solution for the wave equation,

$$
\left\{\begin{array}{c}
E_{i} \tag{33}\\
B_{i}
\end{array}\right\}=\frac{1}{2 \pi} \int d \omega\left\{\begin{array}{c}
\mathcal{E}_{i} \\
\mathcal{B}_{i}
\end{array}\right\} e^{ \pm i k\left(\hat{n} \cdot \vec{x}-v_{\phi} t\right)}
$$

where each component i has a form $f\left(\hat{n} \cdot \vec{x}-v_{\phi} t\right)+g\left(\hat{n} \cdot \vec{x}+v_{\phi} t\right)$, and where \hat{n} is the direction of propagation.

- Using Maxwell's equations (tarea), $\hat{n} \cdot \overrightarrow{\mathcal{E}}=0, \hat{n} \cdot \overrightarrow{\mathcal{B}}=0$ and $\overrightarrow{\mathcal{B}}=\frac{n}{c} \hat{n} \times \overrightarrow{\mathcal{E}}$.

2.1 Spectral decomposition

- For harmonic fields it is customary to use complex notation (because of the spectral decomposition), so that $\vec{S}=\Re(\vec{E}) \times \Re(\vec{H})$.
- In general for products of the type

$$
\begin{equation*}
\Re\left(a e^{-i \omega t}\right) \Re\left(b e^{-i \omega t}\right)=\frac{1}{2} \Re\left(a^{*} b+a b e^{-2 i \omega t}\right), \tag{34}
\end{equation*}
$$

it is also customary to take time averages

$$
\begin{align*}
& \langle(\cdots)\rangle_{T}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{\infty}(\cdots) d t \text {, and } \\
& \quad\left\langle\Re\left(a e^{-i \omega t}\right) \Re\left(b e^{-i \omega t}\right)\right\rangle=\frac{1}{2} \Re\left(a^{*} b\right) . \tag{35}
\end{align*}
$$

2.1- Spectral decomposition

- We therefore have

$$
\begin{equation*}
\langle\vec{S}\rangle=\frac{1}{2} \vec{E} \times \vec{H}^{*}=\frac{1}{2} \sqrt{\frac{\epsilon}{\mu}}|\mathcal{E}|^{2} \hat{n} . \tag{36}
\end{equation*}
$$

And similarly,

$$
\begin{equation*}
\langle u\rangle=\frac{1}{4}\left(\epsilon \vec{E} \cdot \vec{E}^{*}+\frac{1}{\mu} \vec{B} \cdot \vec{B}^{*}\right)=\frac{\epsilon}{2}|\mathcal{E}|^{2} . \tag{37}
\end{equation*}
$$

- Finally, $\langle\vec{S}\rangle=v_{\phi} u \hat{n}$.

Outline

(1) Electromagnetic waves
 Maxwell Equations
 Electrodynamic potentials
 Wave equations
 Poynting's theorem

(2) Wave propagation in vacuum

Spectral decomposition

Connection with radiative transfer
Polarization
Quasi-monochromatic waves

Electromagnetic waves
Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves
(3) Wave propagation in a medium Constitutive equations Kramers-Kronig relations Monochromatic waves

2.2- Connection with radiative transfer

- We can now see that the concept of rays associated to the radiative transfer equation, which describes the transport of radiation in a straight line, is connected to the idea of a plane monochromatic wave with direction of propagation \vec{k}.
- For a plane wave then $\langle\vec{S}\rangle=v_{\phi} u \hat{k}$ is the flux of energy in direction \hat{k}.
- In radiative transfer notation, the flux density in direction k_{\circ} would be

$$
\begin{equation*}
F_{\nu}(\vec{x})=\int d \Omega I_{\nu}(\hat{k}, \vec{x}) \hat{k} \cdot \hat{k}_{\circ} . \tag{38}
\end{equation*}
$$

- Therefore the specific intensity field for a monochromatic plane wave is

$$
\begin{equation*}
I_{\nu}(\hat{k})=\|\vec{S}\| \delta\left(\hat{k}-\hat{k}_{\circ}\right) \tag{39}
\end{equation*}
$$

Outline

(1) Electromagnetic waves

Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
(2) Wave propagation in vacuum

Spectral decomposition Connection with radiative transfer

Polarization

Quasi-monochromatic waves

Electromagnetic waves
Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves
(3) Wave propagation in a medium Constitutive equations Kramers-Kronig relations Monochromatic waves

2.3 Polarization

- In summary, the electric field of a monochromatic wave can be decomposed in two linearly polarized waves,

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\left(\hat{\epsilon}_{1} E_{1}+\hat{\epsilon}_{2} E_{2}\right) e^{i(\vec{k} \cdot \vec{x}-\omega t)} \tag{40}
\end{equation*}
$$

whose total describes, in general, an eliptically polarized wave.

- With a change of vectorial basis to $\hat{\epsilon}_{ \pm}=\frac{1}{\sqrt{2}}\left(\hat{\epsilon}_{1} \pm i \hat{\epsilon}_{2}\right)$, we can also decompose \vec{E} in two circularly polarized waves,

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\left(\hat{\epsilon}_{+} E_{+}+\hat{\epsilon}_{-} E_{-}\right) e^{i(\vec{k} \cdot \vec{x}-\omega t)} . \tag{41}
\end{equation*}
$$

2.3 Polarization

- With the notation

$$
\begin{aligned}
E_{1} & =\mathcal{E}_{1} e^{i \phi_{1}}, & E_{2}=\mathcal{E}_{2} e^{i \phi_{2}}, \\
E_{+} & =\mathcal{E}_{+} e^{i \phi_{+}}, & E_{-}=\mathcal{E}_{-} e^{i \phi_{-}},
\end{aligned}
$$

we have
$\left\{\begin{array}{l}\text { linear polarization : } \phi_{2}-\phi_{1}=0 . \\ \text { circular polarization : }\left|\phi_{2}-\phi_{1}\right|=\frac{\pi}{2} \text { and } \mathcal{E}_{2}=\mathcal{E}_{1} . \\ \text { the general case is eliptical, with : } \tan (\chi)=\frac{\mathcal{E}_{1}}{\mathcal{E}_{2}} \cos \left(\phi_{1}\right) \\ \cos \left(\phi_{2}\right)\end{array}\right.$

2.3 Polarization

- It is customary to use the Stokes parameters to characterize the polarization state of monochromatic light:

$$
\begin{array}{lll}
I= & E_{1} E_{1}^{*}+E_{2} E_{2}^{*}= & \mathcal{E}_{1}^{2}+\mathcal{E}_{2}^{2}, \\
Q= & E_{1} E_{1}^{*}-E_{2} E_{2}^{*} & \mathcal{E}_{1}^{2}-\mathcal{E}_{2}^{2}, \tag{42}\\
U= & E_{1} E_{2}^{*}-E_{2} E_{1}^{*}= & 2 \mathcal{E}_{1} \mathcal{E}_{2} \cos \left(\phi_{2}-\phi_{1}\right), \\
V= & i\left(E_{1} E_{2}^{*}-E_{2} E_{1}^{*}\right)= & 2 \mathcal{E}_{1} \mathcal{E}_{2} \sin \left(\phi_{2}-\phi_{1}\right) .
\end{array}
$$

- We see that Stokes I (the total "radiance") is $I \propto|\vec{S}|, Q$ and U measure linear polarization, while V measure circular polarization. In order to make this obvious it is best to use mental experiments with polarizors that select specific types of polarization (see class).
- For a strictly monochromatic wave, it follows that

$$
\begin{equation*}
I^{2}=Q^{2}+U^{2}+V^{2} . \tag{43}
\end{equation*}
$$

Outline

(1) Electromagnetic waves

Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
(2) Wave propagation in vacuum

Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic waves

Electromagnetic waves
Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic waves

Wave propagation in a medium
Constitutive equations
Kramers-Kronig relations
Monochromatic waves
(3) Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves

2.4 Quasi-monochromatic waves

- In order to obtain $\vec{E}(\vec{x}, \omega)$, we need to know $\vec{E}(\mathrm{t})$ for all t, since

$$
\begin{equation*}
\vec{E}(\vec{x}, \omega)=\int_{-\infty}^{+\infty} \vec{E}(\vec{x}, t) e^{i \omega t} d t . \tag{44}
\end{equation*}
$$

- So in practice, we treat E_{1} and E_{2} as random variables, i.e. for a wave in vacuum, described by Eq. 40,

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\left(E_{1}(t) \hat{e}_{1}+E_{2}(t) \hat{e}_{2}\right) e^{i(\vec{k} \cdot \vec{x}-\omega t)} . \tag{45}
\end{equation*}
$$

Alternatively we can also replace the time dependence in Eq. 45 with a probability density, which itself may depend on time.

- To fix ideas, let's remember that $\Delta t \Delta \omega=1$ for Gaussian spectra, where Δt is the 'coherence time', and $\Delta \omega$ is the 'bandwidth' of the quasi-monochromatic wave.

2.4 Quasi-monochromatic waves

- In order to measure the Stokes parameters, we need averages of the kind

$$
\begin{equation*}
\left\langle E_{1} E_{2}^{*}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int d t E_{1}(t) E_{2}^{*}(t) d t \tag{46}
\end{equation*}
$$

- We therefore have

$$
\begin{gather*}
\left\langle Q^{2}\right\rangle+\left\langle U^{2}\right\rangle+\left\langle V^{2}\right\rangle=\left\langle I^{2}\right\rangle- \\
4\left(\left\langle\mathcal{E}_{1}^{2}\right\rangle\left\langle\mathcal{E}_{2}^{2}\right\rangle-\left\langle\mathcal{E}_{1} \mathcal{E}_{2} e^{i\left(\phi_{2}-\phi_{1}\right)}\right\rangle\left\langle\mathcal{E}_{1} \mathcal{E}_{2} e^{-i\left(\phi_{2}-\phi_{1}\right)}\right\rangle\right. \\
\quad=\left\langle I^{2}\right\rangle- \\
4\left(\left\langle\mathcal{E}_{1}^{2}\right\rangle\left\langle\mathcal{E}_{2}^{2}\right\rangle-\left\langle\mathcal{E}_{1}^{2} \mathcal{E}_{2}^{2} \cos ^{2}\left(\phi_{2}-\phi_{1}\right)\right\rangle-\left\langle\mathcal{E}_{1}^{2} \mathcal{E}_{2}^{2} \cos ^{2}\left(\phi_{2}-\phi_{1}\right)\right\rangle\right), \tag{47}
\end{gather*}
$$

and, by Shwartz' inequality $(\langle a b\rangle \geq\langle a\rangle\langle b\rangle)$,

$$
\begin{equation*}
I^{2} \geq Q^{2}+U^{2}+V^{2} \tag{48}
\end{equation*}
$$

2.4- Quasi-monochromatic waves

- For a wave with a single and constant eliptical polarization state, then the equality holds in Eq. 48.
- On the other hand, for a completely unpolarized wave, $Q=U=V=0$.
- The Stokes parameters are additive. Proof: consider a sum of N different waves

$$
\begin{equation*}
\vec{E}=\sum_{k=1}^{N} \vec{E}^{k}=\sum\left(\hat{\epsilon}_{1} E_{1}^{k}+\hat{\epsilon}_{2} E_{2}^{k}\right) e^{i(\vec{k} \cdot \vec{x}-\omega t)} \tag{49}
\end{equation*}
$$

Because each $E_{i}^{k}(t)$ is statistically independent, $\left\langle E_{i}^{k} E_{j}^{\prime *}\right\rangle=\delta_{k l}\left\langle E_{i}^{k} E_{j}^{k *}\right\rangle$, and

$$
\left(\begin{array}{c}
I \tag{50}\\
Q \\
U \\
V
\end{array}\right)=\sum_{k}\left(\begin{array}{c}
I_{k} \\
Q_{k} \\
U_{k} \\
V_{k}
\end{array}\right) .
$$

2.4- Quasi-monochromatic waves

- We can therefore decompose an arbitrary set of Stokes parameters in

$$
\left(\begin{array}{c}
I \\
Q \tag{51}\\
U \\
V
\end{array}\right)=\overbrace{\left(\begin{array}{c}
I-\sqrt{Q^{2}+U^{2}+V^{2}} \\
0 \\
0 \\
0
\end{array}\right)}^{\text {unpol }}+
$$

- The first term 'unpol' is completely unpolarized since $Q=U=V=0$, while the second term 'pol' is completely polarized since it satisfies $I^{2}=Q^{2}+U^{2}+V^{2}$ (Eq. 43).

2.4- Quasi-monochromatic waves

- The total polarized intensity of a wave train is thus be $p^{\mathrm{pol}}=\sqrt{Q^{2}+U^{2}+V^{2}}$.
- We define the polarization fraction as

$$
\begin{equation*}
\Pi=\frac{l^{\mathrm{pol}}}{l} . \tag{52}
\end{equation*}
$$

Electromagnetic waves
Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic waves

Wave propagation in a medium
Constitutive equations
Kramers-Kronig relations
Monochromatic waves

Outline

(1) Electromagnetic waves

Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
(2) Wave propagation in vacuum Spectral decomposition Connection with radiative transfer Polarization Quasi-monochromatic waves

Electromagnetic waves
Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium
Constitutive equations
Kramers-Kronig relations
Monochromatic waves

(3) Wave propagation in a medium

> Constitutive equations
> Kramers-Kronig relations
> Monochromatic waves

Outline

(1) Electromagnetic waves

Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
(2) Wave propagation in vacuum Spectral decomposition Connection with radiative transfer Polarization Quasi-monochromatic waves

Electromagnetic waves Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium
Constitutive equations
Kramers-Kronig relations
Monochromatic waves
(3) Wave propagation in a medium

Constitutive equations

3.1 Constitutive equations

- Each monochromatic component of the field \vec{E}, \vec{B} must fulfill the following constitutive relations:

$$
\begin{array}{rll}
\vec{P}=\epsilon_{\circ} \chi \vec{E} & \longrightarrow & \vec{P}(\omega)=\epsilon_{\circ} \chi(\omega) \vec{E}(\omega), \\
\vec{B}=\mu \vec{H} & \longrightarrow & \vec{B}(\omega)=\mu(\omega) \vec{H}(\omega), \tag{53}\\
\vec{J}=\sigma \vec{E} & \longrightarrow & \vec{J}(\omega)=\sigma(\omega) \vec{E}(\omega),
\end{array}
$$

in which we have added Ohm's law.

- We note that $\chi(-\omega)=\chi^{*}(\omega)$, so that $\chi(t)=\frac{1}{2 \pi} \int d \omega \chi(\omega) \exp (-i \omega t)$ be real (and similarly for μ and σ).

3.1 Constitutive equations

- The Fourier convolution theorem states that if $X(\omega)=Y(\omega) Z(\omega)$, then

$$
\begin{equation*}
X(t)=\int_{-\infty}^{\infty} Y\left(t-t^{\prime}\right) Z\left(t^{\prime}\right) d t^{\prime} \tag{54}
\end{equation*}
$$

where $Y(t)=\frac{1}{2 \pi} \int d \omega Y(\omega) \exp (-i \omega t)$, etc..

- Applying the convolution theorem to χ (for example),

$$
\begin{align*}
& P(t)=\int_{-\infty}^{\infty} G\left(t-t^{\prime}\right) E\left(t^{\prime}\right) d t^{\prime}, \text { with } \\
& \qquad G(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \epsilon_{\circ} \chi(\omega) e^{-i \omega t} d \omega . \tag{55}
\end{align*}
$$

3.1 Constitutive equations

- We see that $P(t)$ depends on the history of $\vec{E}\left(t^{\prime}\right)$, which bears physical sense only in the past, for $t^{\prime}<t$, so $G(t)=0$ if $t<0$. We will use this property in the next section.
- This time we write the monochromatic wave as

$$
\begin{equation*}
\vec{E}(t)=\vec{A} \cos \left(\omega_{o} t\right)+\vec{B} \sin \left(\omega_{o} t\right)=\Re\left(\vec{E}_{c}(t)\right), \tag{56}
\end{equation*}
$$

with $\vec{E}_{c}=(\vec{A}-i \vec{B})\left(\cos \left(\omega_{0} t\right)+i \sin \left(\omega_{o} t\right)\right)$.

- In the Fourier plane,

$$
\begin{equation*}
E(\omega)=\pi\left[(A+i B) \delta\left(\omega-\omega_{\circ}\right)+(A-i B) \delta\left(\omega+\omega_{\circ}\right)\right] . \tag{57}
\end{equation*}
$$

- We can evaluate

$$
\begin{align*}
& P(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \epsilon_{\circ} \chi(\omega) E(\omega) e^{-i \omega t} d t \\
& \quad=\Re\left[\frac{\epsilon_{\circ}}{2}(A-i B) \chi\left(\omega_{\circ}\right) e^{-i \omega_{o} t}\right]=\Re\left[P_{c}(t)\right], \tag{58}
\end{align*}
$$

using $\chi(-\omega)=\chi^{*}(\omega)$, and where $P_{c}=\epsilon_{\circ} \chi\left(\omega_{\circ}\right) E_{c}(t)$.

3.1 Constitutive equations

- With the spectral decomposition of the constitutive relations we can rewrite the Maxwell equations in their harmonic versions. In the absence of free charges,

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{E}(\omega)=0, & \vec{\nabla} \times \vec{E}(\omega)=-i \omega \mu(\omega) \vec{H}(\omega), \\
\vec{\nabla} \cdot \vec{H}(\omega)=0, & \vec{\nabla} \times \vec{H}(\omega)=-i \omega \epsilon(\omega) \vec{E}(\omega), \tag{59}
\end{array}
$$

where (tarea)

$$
\begin{equation*}
\epsilon(\omega)=\epsilon_{\circ}(1+\chi(\omega))+i \frac{\sigma(\omega)}{\omega} . \tag{60}
\end{equation*}
$$

- Note that both susceptibility and conductivity contribute to the imaginary part of ϵ :

$$
\begin{equation*}
\Im(\epsilon)=\epsilon_{\circ} \Im(\chi)+\Re(\sigma / \omega) . \tag{61}
\end{equation*}
$$

Outline

(1) Electromagnetic waves

Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
(2) Wave propagation in vacuum Spectral decomposition Connection with radiative transfer Polarization Quasi-monochromatic waves

Electromagnetic waves Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium

Constitutive equations

Kramers-Kronig relations

Monochromatic waves

(3) Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves

3.2 Kramers-Kronig relations

- From physical considerations we can anticipate that the induced $P(t)$ depends on the history of the applied field, or

$$
\begin{equation*}
\vec{P}(t)=\int_{-\infty}^{\infty} G\left(t, t^{\prime}\right) \vec{E}\left(t^{\prime}\right) d t^{\prime} \tag{62}
\end{equation*}
$$

(note difference with Eq. 55).

- Let's assume that $\vec{E}=\delta\left(t-t_{0}\right) \vec{E}_{0}$. Then $\vec{P}(t)=G\left(t, t_{\circ}\right) \vec{E}_{o}$, and G is the polarization resulting from a delta-unitary electric field.
- If the properties of the medium do not change in time, $G\left(t, t_{0}\right)=G\left(t-t_{0}\right)$, and we recover Eq. 55.
- Causality requires that $G(\tau)=0$ if $\tau<0$, so

$$
\begin{equation*}
\epsilon_{\circ} \chi(\omega)=\int_{0}^{\infty} d t G(t) e^{i \omega t} \tag{63}
\end{equation*}
$$

Proof: apply Eq. 55 to an harmonic field $\vec{E}=\vec{E}_{\circ} \exp (i \omega t)$.

3.2 Kramers-Kronig relations

- We extend Eq. 63 to the complex plane with $\tilde{\omega}=\omega_{R}+i \omega_{l}$, where $\omega_{1}>0$.

$$
\begin{equation*}
\epsilon_{\circ} \chi(\tilde{\omega})=\int_{0}^{\infty} d t G(t) e^{i \tilde{\omega} t} \tag{64}
\end{equation*}
$$

- If $\int_{0}^{\infty}|G(t)| d t$ converges, so does $\int_{0}^{\infty} G(t) e^{i \tilde{\omega} t} d t$, and $\chi(\tilde{\omega})$ is analytical in the superior \mathbb{C} plane $\left(\omega_{l}>0\right)$.
- Therefore $\chi(\tilde{\omega}) /(\tilde{\omega}-\omega)$ is analítical except in the pole $\tilde{\omega}=\omega$, where ω is a point in the real axis.
- We can apply the Kramers-Kronig theorem (proof: see Bohren \& Huffman, Sec. 2.3.2), which gives

$$
\begin{equation*}
i \pi \chi(\omega)=P \int_{-\infty}^{\infty} \frac{\chi(\Omega)}{\Omega+\omega} d \Omega \tag{65}
\end{equation*}
$$

where P indicates Cauchy's 'principal value'

$$
\begin{align*}
& P \int_{-\infty}^{\infty} \frac{\chi(\Omega)}{\Omega+\omega} d \Omega= \\
& \quad \lim _{a \rightarrow 0}\left(\int_{-\infty}^{\omega-a} \frac{\chi(\Omega)}{\Omega+\omega} d \Omega+\int_{\omega+a}^{\infty} \frac{\chi(\Omega)}{\Omega+\omega} d \Omega\right) . \tag{66}
\end{align*}
$$

3.2 Kramers-Kronig relations

- Using that $\chi^{*}(\Omega)=\chi(-\Omega)$ we can restrict the integration to $\Omega>0$, and use $\chi=\chi_{R}+i \chi_{I}$ to rewrite Eq. 66:

$$
\begin{align*}
\chi_{R}(\omega) & =\frac{2}{\pi} P \int_{0}^{\infty} \frac{\Omega \chi_{I}(\Omega)}{\Omega^{2}-\omega^{2}} d \Omega, \tag{67}\\
\chi_{I}(\omega) & =-\frac{2 \omega}{\pi} P \int_{0}^{\infty} \frac{\chi_{R}(\Omega)}{\Omega^{2}-\omega^{2}} d \Omega . \tag{68}
\end{align*}
$$

- Similar relationships exists for μ y σ.

Outline

(1) Electromagnetic waves

Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
(2) Wave propagation in vacuum Spectral decomposition Connection with radiative transfer Polarization Quasi-monochromatic waves

Electromagnetic waves Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic
waves
Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves

(3) Wave propagation in a medium

Constitutive equations
Kramers-Kronig relations
Monochromatic waves

3.3 Monochromatic waves

- We now extend the monochromatic waves to homogeneous media. We inject

$$
\begin{equation*}
\vec{E}_{c}=\vec{E}_{o} e^{i(\vec{k} \cdot \vec{x}-\omega t)}, \text { and } \vec{H}_{c}=\vec{H}_{o} e^{i(\vec{k} \cdot \vec{x}-\omega t)} \tag{69}
\end{equation*}
$$

into Maxwell's equations.

- Allowing for $\vec{k} \in \mathbb{C}, \vec{k}=\underbrace{\left(k_{R}+i k_{l}\right)}_{k} \hat{e}$,

$$
\begin{equation*}
\vec{E}_{c}=\vec{E}_{o} e^{-\overrightarrow{k_{l}} \cdot \vec{x}} e^{i\left(\overrightarrow{k_{P}} \cdot \vec{x}-\omega t\right)} \tag{70}
\end{equation*}
$$

- The harmonic Maxwell equations (Eqs.59) yield:

$$
\begin{array}{cc}
\vec{k} \cdot \vec{E}_{\circ}=0 & \vec{k} \cdot \vec{H}_{\circ}(\omega)=0 \\
\vec{k} \times \vec{E}_{\circ}=\omega \mu \vec{H}_{\circ}, & \vec{k} \times \vec{H}_{\circ}=-\omega \epsilon \vec{E}_{\circ} . \tag{71}
\end{array}
$$

- And with $\vec{k} \cdot \vec{k}=\omega^{2} \epsilon \mu$,

$$
\begin{equation*}
k_{R}^{2}-k_{l}^{2}+2 i \vec{k}_{l} \cdot \vec{k}_{R}=\omega^{2} \epsilon \mu \text { (tarea). } \tag{72}
\end{equation*}
$$

3.3 Monochromatic waves

- For a homogeneous wave (no free charges),

$$
\vec{k}=\underbrace{\left(k_{R}+i k_{l}\right)}_{k} \hat{e}
$$

and $k=\omega N / c$, where N is the complex refractive index,

$$
N=c \sqrt{\epsilon \mu}=\sqrt{\frac{\epsilon \mu}{\epsilon_{\circ} \mu_{\circ}}} .
$$

- We set $N=n+i \kappa$, where n and κ are both $\in \mathbb{R}^{+}$.

Electromagnetic waves Maxwell Equations
Electrodynamic potentials Wave equations
Poynting's theorem
Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer

Polarization

Quasi-monochromatic waves

Wave propagation in a medium
Constitutive equations

- Eq. 70 gives:

$$
\begin{equation*}
\vec{E}_{c}=\vec{E}_{0} e^{-\frac{2 \pi}{\lambda} \kappa z} e^{i\left(\frac{2 \pi n z}{\lambda}-i \omega t\right)} . \tag{73}
\end{equation*}
$$

- \Rightarrow the imaginary part of N corresponds to absorption.

3.3 Monochromatic waves

- We can apply the Kramers-Kronig relations to $(N(\omega)-1)$ (the -1 is motivated by $\lim _{\omega \rightarrow \infty} N(\omega)=1$):

$$
\begin{align*}
n(\omega)-1 & =\frac{2}{\pi} P \int_{0}^{\infty} \frac{\Omega \kappa(\Omega)}{\Omega^{2}-\omega^{2}} d \Omega \tag{74}\\
\kappa(\omega) & =-\frac{2 \omega}{\pi} P \int_{0}^{\infty} \frac{n(\Omega)}{\Omega^{2}-\omega^{2}} d \Omega
\end{align*}
$$

- We see that the absorption in a medium is also related to the real refractive index.

