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1.1- Quadrivectors

In this section we switch to CGS units, better adapted to
describe the symmetry between ~E and ~B (bibliography: Rybicki
& Lightman).
• We define xµ = (ct , x , y , z) as the contravariant position

quadrivector, whose norm is s2 = ηµνxµxν (using the
implicit sum notation).

• We also introduce xµ = (−ct , x , y , z) as the covariant
position quadrivector.

• xµ = ηµνxν , with

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1)

• With ηµν ≡ ηµν , we have xµ = ηµνxν .
• Note that ηµσησν = δµν .



Relativity
Quadrivectors

Covariance in
electrodynamics

.6

1.1- Quadrivectors

• We change reference system from S to S ′, in uniform
translation with velocity v towards x̂ relative to S.

• A contravariant 4V transforms as

x ′µ = Λµνxν , where Λµν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 , (2)

with β = v/c, and γ = 1/
√

1− v2/c2.
• For a covariant 4V (tarea),

x ′µ = Λ̃ ν
µ xν , with Λ̃ ν

µ = ηµτΛτση
σν . (3)

• Λ̃ ν
µ is the inverse of Λµν :

Λσν Λ̃ µ
σ = δµν , and Λ̃αµx ′µ = xα. (4)
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1.1- Quadrivectors

• The product of two 4Vs Aµ and Bµ is Lorentz invariant:

AµBµ = A′µB′µ. (5)

• We also have the velocity 4V, Uµ ≡ dxµ

dτ , in which dτ is the
relativistic interval. (i.e. of proper time) between xµ and
xµ + dxµ.

• In components (tarea), Uµ = γu(c, ~u), with
γu = 1/

√
1− u2/c2.

• If we change to U ′ = ΛµνUν ,

γu′ = γγu(1− uv
c2 cos(θ)), with θ = ∠(~u, ~v). (6)

• In the system that is bound to a particle with velocity ~u,
U ′ = c(1, ~0), for a 4V Aµ,

A′ 0 = −1
c

UµAµ = −1
c

U ′µA′µ.. (7)
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1.1- Quadrivectors

• We note that the phase of a plane wave must be Lorentz
invariant because the simultaneous cancellation of ~E and
~B in one system implies their cancellation in any other
system.

• Let’s introduce kµ = (ω/c, ~k):

kµxµ = ~k · ~x − ωt = invariant ⇒ kµ is 4V. (8)

• We can use Eq. 7 to deduce the relativistic Doppler effect
(tarea)

ck ′ 0 = ω′ = −Uµkµ = ωγ(1− v
c

cos(θ)). (9)
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1.1- Quadrivectors

• The gradient operator is another example of 4V. If λ is a
scalar invariant, then

λ,µ ≡
∂λ

∂xµ
is a covariant 4V, and (10)

λ,µ ≡ ∂λ

∂xµ
is a contravariant 4V. (11)

• Proof: from xν = Λ̃ ν
µ x ′µ, we have that ∂xν

∂x′µ = Λ̃ ν
µ , and

since λ′ = λ,

λ′,µ =
∂xν

∂x ′µ
∂λ

∂xν
. (12)

• We extend the properties of 4Vs to tensors in general: a
tensor of orden n transforms as the product of n 4Vs.

• For example,
T ′µν = ΛµσΛντTστ ,

T ′µν = ΛµσΛ̃ τ
ν Tσ

τ .



Relativity
Quadrivectors

Covariance in
electrodynamics

.10

Outline

1 Relativity
Quadrivectors
Covariance in electrodynamics



Relativity
Quadrivectors

Covariance in
electrodynamics

.11

1.2- Covariance in electrodynamics

• Charge conservation, ∂ρ∂t + ~∇ · ~J = 0, can be written as

Jµ,µ = 0, using the four-current Jµ = (ρ c, ~J). (13)

• In the Lorentz Gauge , and using CGS units,

∇2~A− 1
c2
∂2~A
∂t2 = −4π

c
~J = ∂α∂

α~A, (14)

∇2Φ− 1
c2
∂2Φ

∂t2 = −4πρ = ∂α∂
αΦ. (15)

• With Aµ = (Φ, ~A),

Aβ,α,α = −4π
c

Jβ , in which Aβ,α,α =
∂2

∂xαxα
Aβ . (16)

• The Lorentz gauge ~∇ · ~A + 1
c
∂Φ
∂t = 0 can be written simply

as Aα,α = 0.
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1.2- Covariance in electrodynamics
• In order to write the Maxwell equations in their covariant

form, we introduce the field tensor

Fµν = Aν,µ − Aµ,ν . (17)

• With ~B = ~∇× ~A and ~E = −~∇Φ− 1
c
∂~A
∂t (tarea): 2

Fµν =


0 −Ex −Ey −Ez

Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 (18)

• The Maxwell equations ~∇ · ~E = 4πρ and
~∇× ~B − 1

c
∂~E
∂t = 4π

c
~J can be written (tarea)

F ,ν
µν =

4π
c

Jµ. (19)

• The ‘internal’ equations ~∇ · ~B = 0 and ~∇× ~E + 1
c
∂~B
∂t = 0

are written (tarea)

Fµν,σ + Fσµ,ν + Fνσ,µ = 0. (20)
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1.2- Covariance in electrodynamics

• We use the covariance of Fµν to infer the transformation
laws for the fields ~E y ~B:

F ′µν = Λ̃ α
µ Λ̃ β

ν Fαβ . (21)

• In terms of components we get (tarea):

E ′‖ = E‖, B′‖ = B‖,
E ′⊥ = γ(~E⊥ + ~β × ~B), B′⊥ = γ(~B⊥ + ~β × ~E).

(22)

• We see that ~E and ~B get mixed up, and if ~B = 0 in S, then
when changing to S ′ we have ~B′ 6= 0.
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1.2- Covariance in electrodynamics
• In order to extend the Lorentz force, we introduce the

momentum quadrivector (four-momentum) Pµ = m◦Uβ ,
where m◦ is the rest mass. We write Pµ = (E/c, ~P), in
which E is the total energy of the particle (which is
E = m◦c2 at rest).

• The acceleration 4V (four-acceleration) is

aµ =
dUµ

dτ
, (23)

and in order to recover Newton’s 2nd law in the
non-relativistic limit, the four-force must be

Fµ = m◦aµ =
dPµ

dτ
. (24)

• We write the 4-Lorentz force with

Fµ =
q
c

Fµ
νUν . (25)

• in components, (tarea) ~F = q(~vc × ~B) + q~E .


	
	Relativity


