Part II

Electromagnetic wave propagation

Contents

II 1
1 Electromagnetic waves 1
1.1 Maxwell Equations 1
1.2 Electrodynamic potentials 2
1.3 Wave equations 2
1.4 Poynting's theorem 3
2 Wave propagation in vacuum 5
2.1 Spectral decomposition 5
2.2 Connection with radiative transfer 6
2.3 Polarization 7
2.4 Quasi-monochromatic waves 8
3 Wave propagation in a medium 10
3.1 Constitutive equations 10
3.2 Kramers-Kronig relations 11
3.3 Monochromatic waves 12
1 Electromagnetic waves

1.1 Maxwell Equations

- In the MKS system (or S.I.), the equations of electrodynamics are, :

$$
\begin{align*}
\vec{\nabla} \cdot \vec{D} & =\rho \tag{1}\\
\vec{\nabla} \cdot \vec{B} & =0 \tag{2}\\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t}, \tag{3}\\
\vec{\nabla} \times \vec{H} & =\vec{J}+\frac{\partial \vec{D}}{\partial t} . \tag{4}
\end{align*}
$$

- For linear media, $\vec{D}=\epsilon \vec{E}$ y $\vec{B}=\mu \vec{H}$.
- In vacuum, $\epsilon=\epsilon_{\circ}$ and $\mu=\mu_{\circ}$.

1.2 Electrodynamic potentials

- Since $\vec{\nabla} \cdot \vec{B}=0$, we have

$$
\begin{equation*}
\vec{B}=\vec{\nabla} \times \vec{A} \tag{5}
\end{equation*}
$$

- For \vec{E}, we use Eq. 5 and Eq. 3 .

$$
\begin{gather*}
\vec{\nabla} \times \underbrace{\left(\vec{E}+\frac{\partial \vec{A}}{\partial t}\right)}_{\equiv-\vec{\nabla} \Phi}=0, \Rightarrow \\
\vec{E}=-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t} . \tag{6}
\end{gather*}
$$

1.3 Wave equations

- We want to write equations that determine the electrodynamic potentials \vec{A} and Φ.
- Using the Maxwell Equations in vacuum to connect directly with \vec{E} and \vec{B}, we have

$$
\begin{gather*}
\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{\circ}} \Rightarrow \nabla^{2} \Phi+\frac{\partial}{\partial t}(\vec{\nabla} \cdot \vec{A})=\frac{\rho}{\epsilon_{\circ}} \tag{7}\\
\vec{\nabla} \times \frac{1}{\mu_{\circ}} \vec{B}=\vec{J}+\frac{1}{\epsilon_{\circ}} \frac{\partial \vec{E}}{\partial t} \Rightarrow \\
\nabla^{2} \vec{A}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{A}}{\partial t^{2}}-\vec{\nabla} \underbrace{\left(\vec{\nabla} \cdot \vec{A}+\frac{1}{c^{2}} \frac{\partial \Phi}{\partial t}\right)}_{\text {term for the Lorentz condition }}=-\mu_{\circ} \vec{J} \tag{8}
\end{gather*}
$$

- If the term highlighted in Eq. 8 is null, which is called the Lorentz Condition,

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{A}+\frac{1}{c^{2}} \frac{\partial \Phi}{\partial t}=0 \tag{9}
\end{equation*}
$$

then we recover the wave equation for the potentials:

$$
\begin{align*}
& \nabla^{2} \Phi-\frac{1}{c^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=-\frac{\rho}{\epsilon_{\circ}} \tag{10}\\
& \nabla^{2} \vec{A}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{A}}{\partial t^{2}}=-\mu_{\circ} \vec{J} \tag{11}
\end{align*}
$$

- To fulfill the Lorentz condition, we use the freedom of gauge:

$$
\begin{equation*}
\vec{A} \longrightarrow \overrightarrow{A^{\prime}}=\vec{A}+\vec{\nabla} \Lambda \tag{12}
\end{equation*}
$$

which leaves invariant $\vec{B}=\vec{\nabla} \times \vec{A}$.

- To also preserve $\vec{E}=-\vec{\nabla} \Phi-\partial \vec{A} / \partial t$, it is necessary that

$$
\begin{equation*}
\Phi \longrightarrow \Phi^{\prime}=\Phi-\frac{\partial \Lambda}{\partial t} \tag{13}
\end{equation*}
$$

- If \vec{A} and Φ both fulfill the general potential equations (Eqs. 8 and 7), but do not fulfill the Lorentz condition, then we can search for $\Lambda(\vec{x}, t)$ so that $\overrightarrow{A^{\prime}}$ and Φ^{\prime} do satisfy the Lorentz condition.
- Injecting Eqs. 12 and 13 in Eq. 9 , we reach an equation for $\Lambda(\vec{x}, t)$:

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{A}+\frac{1}{c^{2}} \frac{\partial \Phi}{\partial t}+\nabla^{2} \Lambda-\frac{1}{c^{2}} \frac{\partial^{2} \Lambda}{\partial t}=0 \tag{14}
\end{equation*}
$$

which is essentially a wave equation with a source term, i.e. exactly the type of equations that we will propose solutions for.

- Independently of the Lorentz condition, we can manipulate the Maxwell equations to reach (tarea):

$$
\begin{align*}
\nabla^{2} \vec{E}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}} & =-\frac{1}{\epsilon_{\circ}}\left(-\vec{\nabla} \rho-\frac{1}{c^{2}} \frac{\partial \vec{J}}{\partial t}\right) \tag{15}\\
\nabla^{2} \vec{B}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}} & =-\mu_{\circ} \vec{\nabla} \times \vec{J} \tag{16}
\end{align*}
$$

which are both wave equations with source terms.

- Away from the sources, i.e. in vacuum, both equations become the homogeneous wave equation.

1.4 Poynting's theorem

- The power exerted by the electromagnetic force $\vec{F}=q \vec{v} \times \vec{B}+q \vec{E}$ on a single charge q with velocity \vec{v} is $\vec{v} \cdot \overrightarrow{\mathcal{F}}=q \vec{v} \cdot \vec{E}$.
- The power exerted on the charge density distribution ρ and on the current density distribution $\vec{J}=\rho \vec{v}$ inside a volume $d \mathcal{V}$ is thus

$$
d P=\vec{J} \cdot \vec{E} d \mathcal{V}
$$

- The total power exerted by the (\vec{E}, \vec{B}) field on the charges inside a volume \mathcal{V} is

$$
\begin{equation*}
P=\int_{\mathcal{V}} \vec{J} \cdot \vec{E} d^{3} x \tag{17}
\end{equation*}
$$

- We want to connect P with the energy stored in the fields. Using the AmpèreMaxwell equation (Eq. 4 we solve for \vec{J}, and following standard handling (tarea),

$$
\begin{equation*}
P=\int_{\mathcal{V}}\left[-\vec{\nabla} \cdot(\vec{E} \times \vec{H})+\vec{H} \cdot(\vec{\nabla} \times \vec{E})-\vec{E} \cdot \frac{\partial \vec{D}}{\partial t}\right] d^{3} x \tag{18}
\end{equation*}
$$

- Now with the induction law, $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$ (Eq. 3),

$$
\begin{equation*}
P=\int_{\mathcal{V}}\left[-\vec{\nabla} \cdot(\vec{E} \times \vec{H})-\vec{H} \cdot \frac{\partial \vec{B}}{\partial t}-\vec{E} \cdot \frac{\partial \vec{D}}{\partial t}\right] d^{3} x \tag{19}
\end{equation*}
$$

- Remembering that for a linear medium $\vec{H} \cdot \frac{\partial \vec{B}}{\partial t}=\frac{1}{2} \frac{\partial}{\partial t}(\vec{H} \cdot \vec{B})$, and $\vec{E} \cdot \frac{\partial \vec{D}}{\partial t}=$ $\frac{1}{2} \frac{\partial}{\partial t}(\vec{E} \cdot \vec{D})$, we reach

$$
\begin{equation*}
P=\int_{\mathcal{V}} \vec{J} \cdot \vec{E} d^{3} x=-\int_{\mathcal{V}}\left[\frac{\partial u}{\partial t}+\vec{\nabla} \cdot \vec{S}\right] d^{3} x \tag{20}
\end{equation*}
$$

where we recognize

$$
\begin{equation*}
u=\frac{1}{2} \vec{E} \cdot \vec{D}+\frac{1}{2} \vec{B} \cdot \vec{H}, \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{S}=\vec{E} \times \vec{H} \tag{22}
\end{equation*}
$$

- For any volume \mathcal{V}, we conclude that

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\vec{\nabla} \cdot \vec{S}=-\vec{J} \cdot \vec{E} \tag{23}
\end{equation*}
$$

- In the same way as for energy conservation, Eq. 23, we can also write the equation for the conservation of linear momentum. Newton's 2nd law for the variation of linear momentum $\delta \vec{p}_{\text {mec }}$ inside a volume $\delta \mathcal{V}$ is:

$$
\begin{equation*}
\frac{d \delta \vec{p}_{\mathrm{mec}}}{d t}=\rho \vec{E} \delta \mathcal{V}+\rho \vec{v} \times \vec{B} \delta \mathcal{V} \tag{24}
\end{equation*}
$$

- In total,

$$
\begin{equation*}
\frac{d \vec{p}_{\mathrm{mec}}}{d t}=\int_{\mathcal{V}} d^{3} x(\rho \vec{E}+\rho \vec{v} \times \vec{B}) \tag{25}
\end{equation*}
$$

- Using Maxwell's equation to replace ρ and \vec{J}, we reach (tarea):

$$
\begin{equation*}
\left.\frac{d}{d t}\left(\vec{p}_{\mathrm{mec}}+\vec{p}_{\mathrm{fields}}\right)\right|_{i}=\sum_{j} \int_{\mathcal{V}} d^{3} x \frac{\partial T_{i j}}{\partial x_{j}} \tag{26}
\end{equation*}
$$

with the following notations:

$$
\begin{equation*}
\vec{p}_{\text {fields }}=\int \epsilon_{\circ}(\vec{E} \times \vec{B}) d^{3} x=\frac{1}{c^{2}} \int d^{3} x \vec{S} \tag{27}
\end{equation*}
$$

which we associate to the momentum in the fields since it fulfills a similar role as $\vec{p}_{\text {mec }}$, and

$$
\begin{equation*}
T_{i j}=\epsilon_{\circ}\left[E_{i} E_{j}+c^{2} B_{i} B_{j}-\frac{1}{2}\left(\vec{E} \cdot \vec{E}+c^{2} \vec{B} \cdot \vec{B}\right) \delta_{i j}\right], \tag{28}
\end{equation*}
$$

which is the tensor of electromagnetic tensions.

- For each component i the integrand of $T_{i j}$ can be seen as a divergence, so

$$
\begin{equation*}
\left.\frac{d}{d t}\left(\vec{p}_{\mathrm{mec}}+\vec{p}_{\mathrm{fields}}\right)\right|_{i}=\oint_{\mathcal{S}} \sum_{j} T_{i j} n_{j} d \mathcal{A} \tag{29}
\end{equation*}
$$

where we recognize a flux integral over the surface bounding the volume \mathcal{V}.

2 Wave propagation in vacuum

2.1 Spectral decomposition

- In the absence of sources, if we decompose

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\frac{1}{2 \pi} \int d \omega \vec{E}(\vec{x}, \omega) e^{i w t} \tag{30}
\end{equation*}
$$

the Maxwell equations yield

$$
\left(\nabla^{2}+\mu \epsilon \omega^{2}\right)\left\{\begin{array}{c}
\vec{E} \tag{31}\\
\vec{B}
\end{array}\right\}=0
$$

- If ϵ and μ are both real, the solutions are $e^{ \pm i k x}$, with $k=\sqrt{\mu \epsilon} \omega$
- We define the phase velocity $v_{\phi}=\frac{\omega}{k}=\frac{c}{n}$, where $n=\sqrt{\frac{\mu \epsilon}{\mu_{0} \epsilon_{0}}}$ is the refraction index.
- In general,

$$
\left\{\begin{array}{c}
E_{i} \tag{32}\\
B_{i}
\end{array}\right\}=\frac{1}{2 \pi} \int d \omega\left\{\begin{array}{c}
\mathcal{E}_{i} \\
\mathcal{B}_{i}
\end{array}\right\} e^{ \pm i \vec{k} \cdot \vec{x}-i w t}
$$

- We recognize d'Alembert's solution for the wave equation,

$$
\left\{\begin{array}{c}
E_{i} \tag{33}\\
B_{i}
\end{array}\right\}=\frac{1}{2 \pi} \int d \omega\left\{\begin{array}{c}
\mathcal{E}_{i} \\
\mathcal{B}_{i}
\end{array}\right\} e^{ \pm i k\left(\hat{n} \cdot \vec{x}-v_{\phi} t\right)}
$$

where each component i has a form $f\left(\hat{n} \cdot \vec{x}-v_{\phi} t\right)+g\left(\hat{n} \cdot \vec{x}+v_{\phi} t\right)$, and where \hat{n} is the direction of propagation.

- Using Maxwell's equations (tarea), $\hat{n} \cdot \overrightarrow{\mathcal{E}}=0, \hat{n} \cdot \overrightarrow{\mathcal{B}}=0$ and $\overrightarrow{\mathcal{B}}=\frac{n}{c} \hat{n} \times \overrightarrow{\mathcal{E}}$.
- For harmonic fields it is customary to use complex notation (because of the spectral decomposition), so that $\vec{S}=\Re(\vec{E}) \times \Re(\vec{H})$.
- In general for products of the type

$$
\begin{equation*}
\Re\left(a e^{-i \omega t}\right) \Re\left(b e^{-i \omega t}\right)=\frac{1}{2} \Re\left(a^{*} b+a b e^{-2 i \omega t}\right), \tag{34}
\end{equation*}
$$

it is also customary to take time averages $\langle(\cdots)\rangle_{T}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{\infty}(\cdots) d t$, and

$$
\begin{equation*}
\left\langle\Re\left(a e^{-i \omega t}\right) \Re\left(b e^{-i \omega t}\right)\right\rangle=\frac{1}{2} \Re\left(a^{*} b\right) . \tag{35}
\end{equation*}
$$

- We therefore have

$$
\begin{equation*}
\langle\vec{S}\rangle=\frac{1}{2} \vec{E} \times \vec{H}^{*}=\frac{1}{2} \sqrt{\frac{\epsilon}{\mu}}|\mathcal{E}|^{2} \hat{n} \tag{36}
\end{equation*}
$$

And similarly,

$$
\begin{equation*}
\langle u\rangle=\frac{1}{4}\left(\epsilon \vec{E} \cdot \vec{E}^{*}+\frac{1}{\mu} \vec{B} \cdot \vec{B}^{*}\right)=\frac{\epsilon}{2}|\mathcal{E}|^{2} . \tag{3}
\end{equation*}
$$

- Finally, $\langle\vec{S}\rangle=v_{\phi} u \hat{n}$.

2.2 Connection with radiative transfer

- We can now see that the concept of rays associated to the radiative transfer equation, which describes the transport of radiation in a straight line, is connected to the idea of a plane monochromatic wave with direction of propagation \vec{k}.
- For a plane wave then $\langle\vec{S}\rangle=v_{\phi} u \hat{k}$ is the flux of energy in direction \hat{k}.
- In radiative transfer notation, the flux density in direction k_{\circ} would be

$$
\begin{equation*}
F_{\nu}(\vec{x})=\int d \Omega I_{\nu}(\hat{k}, \vec{x}) \hat{k} \cdot \hat{k}_{\circ} \tag{38}
\end{equation*}
$$

- Therefore the specific intensity field for a monochromatic plane wave is

$$
\begin{equation*}
I_{\nu}(\hat{k})=\|\vec{S}\| \delta\left(\hat{k}-\hat{k}_{\circ}\right) \tag{39}
\end{equation*}
$$

2.3 Polarization

- In summary, the electric field of a monochromatic wave can be decomposed in two linearly polarized waves,

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\left(\hat{\epsilon}_{1} E_{1}+\hat{\epsilon}_{2} E_{2}\right) e^{i(\vec{k} \cdot \vec{x}-\omega t)} \tag{40}
\end{equation*}
$$

whose total describes, in general, an eliptically polarized wave.

- With a change of vectorial basis to $\hat{\epsilon}_{ \pm}=\frac{1}{\sqrt{2}}\left(\hat{\epsilon}_{1} \pm i \hat{\epsilon}_{2}\right)$, we can also decompose \vec{E} in two circularly polarized waves,

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\left(\hat{\epsilon}_{+} E_{+}+\hat{\epsilon}_{-} E_{-}\right) e^{i(\vec{k} \cdot \vec{x}-\omega t)} . \tag{41}
\end{equation*}
$$

- With the notation

$$
\begin{aligned}
E_{1} & =\mathcal{E}_{1} e^{i \phi_{1}}, & E_{2} & =\mathcal{E}_{2} e^{i \phi_{2}}, \\
E_{+} & =\mathcal{E}_{+} e^{i \phi_{+}}, & E_{-} & =\mathcal{E}_{-} e^{i \phi_{-}},
\end{aligned}
$$

we have

$$
\left\{\begin{array}{l}
\text { linear polarization : } \phi_{2}-\phi_{1}=0 \\
\text { circular polarization }:\left|\phi_{2}-\phi_{1}\right|=\frac{\pi}{2} \text { and } \mathcal{E}_{2}=\mathcal{E}_{1} \\
\text { the general case is eliptical, with }: \tan (\chi)=\frac{\mathcal{E}_{1}}{\mathcal{E}_{2}} \frac{\cos \left(\phi_{1}\right)}{\cos \left(\phi_{2}\right)} .
\end{array}\right.
$$

- It is customary to use the Stokes parameters to characterize the polarization state of monochromatic light:

$$
\begin{align*}
& I=E_{1} E_{1}^{*}+E_{2} E_{2}^{*}=\mathcal{E}_{1}^{2}+\mathcal{E}_{2}^{2}, \\
& Q=E_{1} E_{1}^{*}-E_{2} E_{2}^{*}=\mathcal{E}_{1}^{2}-\mathcal{E}_{2}^{2}, \tag{42}\\
& U=E_{1} E_{2}^{*}-E_{2} E_{1}^{*}=2 \mathcal{E}_{1} \mathcal{E}_{2} \cos \left(\phi_{2}-\phi_{1}\right), \\
& V=i\left(E_{1} E_{2}^{*}-E_{2} E_{1}^{*}\right)=2 \mathcal{E}_{1} \mathcal{E}_{2} \sin \left(\phi_{2}-\phi_{1}\right)
\end{align*}
$$

- We see that Stokes I (the total "radiance") is $I \propto|\vec{S}|, Q$ and U measure linear polarization, while V measure circular polarization. In order to make this obvious it is best to use mental experiments with polarizors that select specific types of polarization (see class).
- For a strictly monochromatic wave, it follows that

$$
\begin{equation*}
I^{2}=Q^{2}+U^{2}+V^{2} \tag{43}
\end{equation*}
$$

2.4 Quasi-monochromatic waves

- In order to obtain $\vec{E}(\vec{x}, \omega)$, we need to know $\vec{E}(\mathrm{t})$ for all t, since

$$
\begin{equation*}
\vec{E}(\vec{x}, \omega)=\int_{-\infty}^{+\infty} \vec{E}(\vec{x}, t) e^{i \omega t} d t \tag{44}
\end{equation*}
$$

- So in practice, we treat E_{1} and E_{2} as random variables, i.e. for a wave in vacuum, described by Eq. 40 ,

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\left(E_{1}(t) \hat{e}_{1}+E_{2}(t) \hat{e}_{2}\right) e^{i(\vec{k} \cdot \vec{x}-\omega t)} \tag{45}
\end{equation*}
$$

Alternatively we can also replace the time dependece with a probability density, which itself may depend on time.

- To fix ideas, let's remember that $\Delta t \Delta \omega=1$ for Gaussian spectra, where Δt is the 'coherence time', and $\Delta \omega$ is the 'bandwidth' of the quasi-monochromatic wave.
- In order to measure the Stokes parameters, we need averages of the kind

$$
\begin{equation*}
\left\langle E_{1} E_{2}^{*}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int d t E_{1}(t) E_{2}^{*}(t) d t \tag{46}
\end{equation*}
$$

- We therefore have

$$
\begin{align*}
&\left\langle Q^{2}\right\rangle+\left\langle U^{2}\right\rangle+\left\langle V^{2}\right\rangle=\left\langle I^{2}\right\rangle- \\
& 4\left(\left\langle\mathcal{E}_{1}^{2}\right\rangle\left\langle\mathcal{E}_{2}^{2}\right\rangle-\left\langle\mathcal{E}_{1} \mathcal{E}_{2} e^{i\left(\phi_{2}-\phi_{1}\right)}\right\rangle\left\langle\mathcal{E}_{1} \mathcal{E}_{2} e^{-i\left(\phi_{2}-\phi_{1}\right)}\right\rangle\right. \\
&=\left\langle I^{2}\right\rangle-
\end{align*}
$$

and, by Shwartz' inequality $(\langle a b\rangle \geq\langle a\rangle\langle b\rangle)$,

$$
\begin{equation*}
I^{2} \geq Q^{2}+U^{2}+V^{2} \tag{48}
\end{equation*}
$$

- For a wave with a single and constant eliptical polarization state, then the equality holds in Eq. 48
- On the other hand, for a completely unpolarized wave, $Q=U=V=0$.
- The Stokes parameters are additive. Proof: consider a sum of N different waves

$$
\begin{equation*}
\vec{E}=\sum_{k=1}^{N} \vec{E}^{k}=\sum\left(\hat{\epsilon}_{1} E_{1}^{k}+\hat{\epsilon}_{2} E_{2}^{k}\right) e^{i(\vec{k} \cdot \vec{x}-\omega t)} \tag{49}
\end{equation*}
$$

Because each $E_{i}^{k}(t)$ is statistically independent, $\left\langle E_{i}^{k} E_{j}^{l *}\right\rangle=\delta_{k l}\left\langle E_{i}^{k} E_{j}^{k *}\right\rangle$, and

$$
\left(\begin{array}{c}
I \tag{50}\\
Q \\
U \\
V
\end{array}\right)=\sum_{k}\left(\begin{array}{c}
I_{k} \\
Q_{k} \\
U_{k} \\
V_{k}
\end{array}\right)
$$

- We can therefore decompose an arbitrary set of Stokes parameters in

$$
\begin{align*}
&\left(\begin{array}{c}
I \\
Q \\
U \\
V
\end{array}\right)=\overbrace{\left(\begin{array}{c}
I-\sqrt{Q^{2}+U^{2}+V^{2}} \\
0 \\
0 \\
0
\end{array}\right)}^{\text {unpol }}+ \\
& \overbrace{\left(\begin{array}{c}
\sqrt{Q^{2}+U^{2}+V^{2}} \\
Q \\
U \\
V
\end{array}\right)}^{\text {pol }}+ \tag{51}
\end{align*}
$$

- The first term 'unpol' is completely unpolarized since $Q=U=V=0$, while the second term 'pol' is completely polarized since it satisfies $I^{2}=$ $Q^{2}+U^{2}+V^{2}$ (Eq. 43).
- The total polarized intensity of a wave train is thus be $I^{\mathrm{pol}}=\sqrt{Q^{2}+U^{2}+V^{2}}$.
- We define the polarization fraction as

$$
\begin{equation*}
\Pi=\frac{I^{\mathrm{pol}}}{I} \tag{52}
\end{equation*}
$$

3 Wave propagation in a medium

3.1 Constitutive equations

- Each monochromatic component of the field \vec{E}, \vec{B} must fulfill the following constitutive relations:

$$
\begin{array}{rll}
\vec{P}=\epsilon_{\circ} \chi \vec{E} & \longrightarrow & \vec{P}(\omega)=\epsilon_{\circ} \chi(\omega) \vec{E}(\omega), \\
\vec{B}=\mu \vec{H} & \longrightarrow \quad \vec{B}(\omega)=\mu(\omega) \vec{H}(\omega), \tag{53}\\
\vec{J}=\sigma \vec{E} & \longrightarrow \quad \vec{J}(\omega)=\sigma(\omega) \vec{E}(\omega),
\end{array}
$$

in which we have added Ohm's law.

- We note that $\chi(-\omega)=\chi^{*}(\omega)$, so that $\chi(t)=\frac{1}{2 \pi} \int d \omega \chi(\omega) \exp (-i \omega t)$ be real (and similarly for μ and σ).
- The Fourier convolution theorem states that if $X(\omega)=Y(\omega) Z(\omega)$, then

$$
\begin{equation*}
X(t)=\int_{-\infty}^{\infty} Y\left(t-t^{\prime}\right) Z\left(t^{\prime}\right) d t^{\prime} \tag{54}
\end{equation*}
$$

where $Y(t)=\frac{1}{2 \pi} \int d \omega Y(\omega) \exp (-i \omega t)$, etc..

- Applying the convolution theorem to χ (for example),

$$
\begin{align*}
& P(t)=\int_{-\infty}^{\infty} G\left(t-t^{\prime}\right) E\left(t^{\prime}\right) d t^{\prime}, \text { with } \\
& \qquad G(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \epsilon_{\circ} \chi(\omega) e^{-i \omega t} d \omega . \tag{55}
\end{align*}
$$

- We see that $P(t)$ depends on the history of $\vec{E}\left(t^{\prime}\right)$, which bears physical sense only in the past, for $t^{\prime}<t$, so $G(t)=0$ if $t<0$. We will use this property in the next section.
- This time we write the monochromatic wave as

$$
\begin{equation*}
\vec{E}(t)=\vec{A} \cos \left(\omega_{0} t\right)+\vec{B} \sin \left(\omega_{0} t\right)=\Re\left(\vec{E}_{c}(t)\right) \tag{56}
\end{equation*}
$$

with $\vec{E}_{c}=(\vec{A}-i \vec{B})\left(\cos \left(\omega_{0} t\right)+i \sin \left(\omega_{0} t\right)\right)$.

- In the Fourier plane,

$$
\begin{equation*}
E(\omega)=\pi\left[(A+i B) \delta\left(\omega-\omega_{\circ}\right)+(A-i B) \delta\left(\omega+\omega_{\circ}\right)\right] . \tag{57}
\end{equation*}
$$

- We can evaluate

$$
\begin{align*}
P(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \epsilon_{\circ} \chi(\omega) E & (\omega) e^{-i \omega t} d t \\
& =\Re\left[\frac{\epsilon_{\circ}}{2}(A-i B) \chi\left(\omega_{0}\right) e^{-i \omega_{0} t}\right]=\Re\left[P_{c}(t)\right] \tag{58}
\end{align*}
$$

using $\chi(-\omega)=\chi^{*}(\omega)$, and where $P_{c}=\epsilon_{\circ} \chi\left(\omega_{\circ}\right) E_{c}(t)$.

- With the spectral decomposition of the constitutive relations we can rewrite the Maxwell equations in their harmonic versions. In the absence of free charges,

$$
\begin{align*}
\vec{\nabla} \cdot \vec{E}(\omega)=0, & \vec{\nabla} \times \vec{E}(\omega)=-i \omega \mu(\omega) \vec{H}(\omega), \\
\vec{\nabla} \cdot \vec{H}(\omega)=0, & \vec{\nabla} \times \vec{H}(\omega)=-i \omega \epsilon(\omega) \vec{E}(\omega), \tag{59}
\end{align*}
$$

where

$$
\begin{equation*}
\epsilon(\omega)=\epsilon_{\circ}(1+\chi(\omega))+i \frac{\sigma(\omega)}{\omega} . \tag{60}
\end{equation*}
$$

- Note that both susceptibility and conductivity contribute to the imaginary part of ϵ :

$$
\begin{equation*}
\Im(\epsilon)=\epsilon_{\circ} \Im(\chi)+\Re(\sigma / \omega) . \tag{61}
\end{equation*}
$$

3.2 Kramers-Kronig relations

- From physical considerations we can anticipate that the induced $P(t)$ depends on the history of the applied field, or

$$
\begin{equation*}
\vec{P}(t)=\int_{-\infty}^{\infty} G\left(t, t^{\prime}\right) \vec{E}\left(t^{\prime}\right) d t^{\prime} \tag{62}
\end{equation*}
$$

(note difference with Eq. 55).

- Let's assume that $\vec{E}=\delta\left(t-t_{\circ}\right) \vec{E}_{\circ}$. Then $\vec{P}(t)=G\left(t, t_{\circ}\right) \vec{E}_{\circ}$, and G is the polarization resulting from a delta-unitary electric field.
- If the properties of the medium do not change in time, $G\left(t, t_{\circ}\right)=G\left(t-t_{\circ}\right)$, and we recover Eq. 55 .
- Causality requires that $G(\tau)=0$ if $\tau<0$, so

$$
\begin{equation*}
\epsilon_{\circ} \chi(\omega)=\int_{0}^{\infty} d t G(t) e^{i \omega t} \tag{63}
\end{equation*}
$$

Proof: apply Eq. 55 to an harmonic field $\vec{E}=\vec{E}_{\circ} \exp (i \omega t)$.

- We extend Eq. 63 to the complex plane with $\tilde{\omega}=\omega_{R}+i \omega_{I}$, where $\omega_{I}>0$.

$$
\begin{equation*}
\epsilon_{\circ} \chi(\tilde{\omega})=\int_{0}^{\infty} d t G(t) e^{i \tilde{\omega} t} \tag{64}
\end{equation*}
$$

- If $\int_{0}^{\infty}|G(t)| d t$ converges, so does $\int_{0}^{\infty} G(t) e^{i \tilde{\omega} t} d t$, and $\chi(\tilde{\omega})$ is analytical in the superior \mathbb{C} plane $\left(\omega_{I}>0\right)$.
- Therefore $\chi(\tilde{\omega}) /(\tilde{\omega}-\omega)$ is analítical except in the pole $\tilde{\omega}=\omega$, where ω is a point in the real axis.
- We can apply the Kramers-Kronig theorem (proof: see Bohren \& Huffman, Sec. 2.3.2), which gives

$$
\begin{equation*}
i \pi \chi(\omega)=P \int_{-\infty}^{\infty} \frac{\chi(\Omega)}{\Omega+\omega} d \Omega \tag{65}
\end{equation*}
$$

where P indicates Cauchy's 'principal value'

$$
\begin{align*}
& P \int_{-\infty}^{\infty} \frac{\chi(\Omega)}{\Omega+\omega} d \Omega= \\
& \quad \lim _{a \rightarrow 0}\left(\int_{-\infty}^{\omega-a} \frac{\chi(\Omega)}{\Omega+\omega} d \Omega+\int_{\omega+a}^{\infty} \frac{\chi(\Omega)}{\Omega+\omega} d \Omega\right) . \tag{66}
\end{align*}
$$

- Using that $\chi^{*}(\Omega)=\chi(-\Omega)$ we can restrict the integration to $\Omega>0$, and use $\chi=\chi_{R}+i \chi_{I}$ to rewrite Eq. 66 ;

$$
\begin{align*}
\chi_{R}(\omega) & =\frac{2}{\pi} P \int_{0}^{\infty} \frac{\Omega \chi_{I}(\Omega)}{\Omega^{2}-\omega^{2}} d \Omega \tag{67}\\
\chi_{I}(\omega) & =-\frac{2 \omega}{\pi} P \int_{0}^{\infty} \frac{\chi_{R}(\Omega)}{\Omega^{2}-\omega^{2}} d \Omega \tag{68}
\end{align*}
$$

- Similar relationships exists for μ y σ.

3.3 Monochromatic waves

- We now extend the monochromatic waves to homogeneous media. We inject

$$
\begin{equation*}
\vec{E}_{c}=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}, \text { and } \vec{H}_{c}=\vec{H}_{\circ} e^{i(\vec{k} \cdot \vec{x}-\omega t)} \tag{69}
\end{equation*}
$$

into Maxwell's equations.

- Allowing for $\vec{k} \in \mathbb{C}, \vec{k}=\underbrace{\left(k_{R}+i k_{I}\right)}_{k} \hat{e}$,

$$
\begin{equation*}
\vec{E}_{c}=\vec{E}_{0} e^{-\overrightarrow{k_{I}} \cdot \vec{x}} e^{i\left(\overrightarrow{k_{R}} \cdot \vec{x}-\omega t\right)} \tag{70}
\end{equation*}
$$

- The harmonic Maxwell equations (Eqs. 59) yield:

$$
\begin{array}{cc}
\vec{k} \cdot \vec{E}_{\circ}=0 & \vec{k} \cdot \vec{H}_{\circ}(\omega)=0 \\
\vec{k} \times \vec{E}_{\circ}=\omega \mu \vec{H}_{\circ}, & \vec{k} \times \vec{H}_{\circ}=-\omega \epsilon \vec{E}_{\circ} \tag{71}
\end{array}
$$

- And with $\vec{k} \cdot \vec{k}=\omega^{2} \epsilon \mu$,

$$
\begin{equation*}
k_{R}^{2}-k_{I}^{2}+2 i \vec{k}_{I} \cdot \vec{k}_{R}=\omega^{2} \epsilon \mu \text { (tarea) } \tag{72}
\end{equation*}
$$

- For a homogeneous wave (no free charges),

$$
\vec{k}=\underbrace{\left(k_{R}+i k_{I}\right)}_{k} \hat{e},
$$

and $k=\omega N / c$, where N is the complex refractive index,

$$
N=c \sqrt{\epsilon \mu}=\sqrt{\frac{\epsilon \mu}{\epsilon_{\circ} \mu_{\circ}}}
$$

- We set $N=n+i \kappa$, where n and κ are both $\in \mathbb{R}^{+}$.
- Eq. 70 gives:

$$
\begin{equation*}
\vec{E}_{c}=\vec{E}_{0} e^{-\frac{2 \pi}{\lambda} \kappa z} e^{i\left(\frac{2 \pi n z}{\lambda}-i \omega t\right)} . \tag{73}
\end{equation*}
$$

- \Rightarrow the imaginary part of N corresponds to absorption.
- We can apply the Kramers-Kronig relations to $(N(\omega)-1)$ (the -1 is motivated by $\lim _{\omega \rightarrow \infty} N(\omega)=1$):

$$
\begin{align*}
n(\omega)-1 & =\frac{2}{\pi} P \int_{0}^{\infty} \frac{\Omega \kappa(\Omega)}{\Omega^{2}-\omega^{2}} d \Omega \\
\kappa(\omega) & =-\frac{2 \omega}{\pi} P \int_{0}^{\infty} \frac{n(\Omega)}{\Omega^{2}-\omega^{2}} d \Omega \tag{74}
\end{align*}
$$

- We see that the absorption in a medium is also related to the real refractive index.

