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1 Green function for the wave equation

• In order to determine ~A(~x, t) and Φ(~x, t), we need to solve the wave equation
with source terms. For a generic field Ψ(~x, t),

∇2Ψ− 1

c2
∂Ψ

∂t2
= −4πf(~x, t). (1)

• It is convenient to use the Fourier time-domain,

ψ(~x, t) =
1

2π

∫ +∞

−∞
ψ(~x, ω)e−iωtdω, (2)

whose inverse is

ψ(~x, ω) =

∫ +∞

−∞
ψ(~x, t)eiωtdt. (3)
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• Injecting Ec. 2 in Ec. 1, we reach the Helmholtz equation:

(∇2 + k2)Ψ(~x, ω) = −4πf(~x, ω). (4)
.3

• The Helmholtz equation Eq. 4 is very similar to the Poisson equation, and we
can anticipate the use of similar machinery in its solution. The Green function
satisfies

(∇2 + k2)Gk(~x, ~x
′) = −4πδ(~x, ~x′). (5)

• Changing coordinates to a system with origin in ~x′, we see that Eq. 5 has
spherical symmetry, and Gk(~x, ~x

′) = Gk(R), with R = |~R| and ~R = ~x− ~x′
• Eq. 5 can thus be written as

1

R

d2

dR2
(RGk) + k2Gk = −4πδ(~R). (6)

• If R 6= 0, the solution to Eq. 6 is RGk = AeikR+Be−ikR, where the constants
A y B do not depend on k. In order to dertermine these constants, we use the
case k = 0, i.e. Poisson, whose solution is Gk=0(R) = 1/R, −→ A+B = 1.

• Thus the general solution to Eq. 6 is

Gk(R) = AG+
k (R) +BG−k (R), with G±k =

e±ikR

R
and A+B = 1. (7)
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• The A and B values depend on the initial conditions, i.e. on the boundary
conditions in time. To see this, we return to the time domain and we generalize
Eq. 5: (

∇2 − 1

c2
∂

∂t2

)
G±(~x, t; ~x′, t′) = −4πδ(~x− ~x′)δ(t− t′). (8)

• Now, returning to the frequency domain ω, we generalize Eq. 5 to

(∇2 + k2)Gk(~x, ~x
′; t′) = −4πδ(~x, ~x′)eiωt

′
, (9)

with solution G±k (R)eiωt
′ .

• To return once more to the time domain, we use Eq. 2, and

G±(R; t, t′) = G±(R, τ) =
1

2π

∫
e±ikR−iωτ

R
dω,

where τ = t− t′.
.5
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• For a non-dispersive medium (one with ω/k = c), we reach

G±(~x, t; ~x′, t′) =
δ
(
t′ −

[
t∓ |~x−~x

′|
c

])
|~x− ~x′|

(10)

• We apply this Green function to write the generic solutions of Ec. 1:

Ψ±(~x, t) =

∫
d3x′dt′G±(~x, t; ~x′, t′)f(~x′, t′). (11)

• The + case corresponds to the retarded solution, with an entry or an initial
condition ψin (valid before the sources f are activated, at t = 0, so f(~x, t) = 0
if t < 0):

Ψ+(~x, t) = Ψin(~x, t) +

∫
d3x′dt′G+(~x, t; ~x′, t′)f(~x′, t′), (12)

where we see that if t < 0, there is no ~x for any given ~x′ such that
[
t− |~x−~x

′|
c

]
>

0. Hence if t < 0,
∫
d3x′dt′G+(~x, t; ~x′, t′)f(~x′, t′) = 0, and Ψ(~x, t) =

Ψin(~x, t).
.6

• Instead the − case corresponds to the anticipated solution, with an exit con-
dition Ψout (after the sources f are deactivated, at t = 0, so f(~x, t) = 0 if
t > 0)),

Ψ−(~x, t) = Ψout(~x, t) +

∫
d3x′dt′G−(~x, t; ~x′, t′)f(~x′, t′), (13)

where we see that if t > 0, there is no ~x for any given ~x′ such that
[
t+ |~x−~x′|

c

]
<

0. Hence if t > 0,
∫
d3x′dt′G−(~x, t; ~x′, t′)f(~x′, t′) = 0, and Ψ(~x, t) =

Ψout(~x, t).
• In general we use the retarded solution Ψ+.

.7

2 Retarded Potentials

2.1 Application of the Green function to the electrodynamic
potentials

• We normally use the retarded solution, with initial condition Ψin = 0, or, in
compact notation,

Ψ(~x, t) =

∫
d3x′

[f(~x′, t′)]ret
|~x− ~x′|

, (14)

where [(· · · )]re means to evaluate in t′ = t− |~x− ~x′|/c.
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• Applying to the electrodynamic potentials,

Φ(~x, t) =
1

4πε◦

∫
d3x′

[ρ(~x′, t′)]ret
|~x− ~x′|

, (15)

~A(~x, t) =
µ◦
4π

∫
d3x′

[ ~J(~x′, t′)]ret
|~x− ~x′|

. (16)

.8

2.2 Retarded electromagnetic field

• In order to calculate ~E and ~B, we use ~B = ~∇× ~A and ~E = −~∇φ− ∂ ~A
∂t

.
• Alternatively, we can use the Maxwell equations to reach:

∇2 ~E − 1

c2
∂2 ~E

∂t2
= − 1

ε◦

(
−~∇ρ− 1

c2
∂ ~J

∂t

)
, (17)

∇2 ~B − 1

c2
∂2 ~B

∂t2
= −µ◦~∇× ~J. (18)

• Using the Green function, we get

~E(~x, t) =
1

4πε◦

∫
d3x′

1

R

[
−~∇′ρ− 1

c2
∂ ~J

∂t′

]
ret

, (19)

~B(~x, t) =
µ◦
4π

∫
d3x′

1

R

[
~∇′ × ~J

]
ret
. (20)
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• The expressions for the retarded fields Eqs. 19 and 21 can also be written in a
form that connects directly with the static expressions (tarea):

~E(~x, t) =
1

4πε◦

∫
d3x′

{
R̂

R2
[ρ(~x′, t′)]ret +

R̂

cR

[
∂ρ(~x′, t′)

∂t

]
ret

− 1

c2R

[
∂ ~J

∂t

]
ret

}
(21)

~B(~x, t) =
µ◦
4π

∫
d3x′

{[
~J(~x′, t′)

]
ret
× R̂

R2
+ [

∂ ~J(~x′, t′)

∂t

]
ret

× R̂

cR

}
(22)

.10
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3 Multipolar Radiation

3.1 Wave zone

• We now consider harmonic sources (the general case can be obtained by su-
perposition of such sources):

ρ(~x, t) = ρ(~x)e−iωt,
~J(~x, t) = ~J(~x)e−iωt.

(23)

• We saw that in the presence of sources, the field ~A(~x, t) generated in vacuum,
and without spatial boundaries, is

~A(~x, t) =
µ◦
4π

∫
d3x′

∫
dt′

~J(~x′, t′)

|~x− ~x′|
δ

(
t′ +
|~x− ~x′|

c
− t
)
.

• For harmonic sources,

~A(~x, t) = e−iωt
µ◦
4π

∫
d3x′

~J(~x′)eik|~x−~x
′|

|~x− ~x′|
, (24)

with k = ω/c .11

• We then obtain ~H and ~E with

~H =
1

µ◦
~∇× ~A, (25)

and Faraday’s law,

~E =
i

k

√
µ◦
ε◦
~∇× ~H. (26)

• We now consider sources confined inside a region whose maximum extension
is d, and that contains the origin. If d� λ, there are 3 regions of interest:

– The near zone, with d < r � λ, where eik|~x−~x′| ∼ 1 and we recover the
static potentials except for harmonic oscilation, ~A(~x, t) = ~A(~x)e−iωt.

– The intermediate zone with d� r ∼ λ.
– The far zone, with λ� r. .12

• In the far zone, with λ� r, |~x− ~x′| ≈ r − n̂ · ~x′, where n̂ = ~x/r ⇒

lim
kr→∞

~A(~x) =
µ◦
4π

eikr

r

∫
~J(~x′)e−ikn̂·~x

′
d3x′. (27)

• We see that ~A(x, t) = ~A(~x)e−iωt represents a spherical wave travelling out-
wards.

• In addition, (tarea) using Eqs 25 and 26 we also see that ~E and ~H also form
spherical transverse waves (orthogonal to n̂).

• The far zone thus corresponds to the radiation zone, also called wave zone. .13
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3.2 Dipolar radiation

• We now use d � λ to simplify ~A in the wave zone. The integrand in Eq. 27
can be expanded in powers of −ikn̂ · ~x′, using

e−ikn̂·~x
′
=
∞∑
n=0

(−ik)n

n!
(n̂ · ~x′)n.

• Therefore,

~A(~x) =
µ◦
4π

eikr

r

∞∑
n=0

(−ik)n

n!

∫
~J(~x′)(n̂ · ~x′)nd3x′. (28)

.14

• For n = 0, which is the dominant term in the expansion in kn̂ · ~x′, we get:

~A(~x) =
µ◦
4π

eikr

r

∫
~J(~x′)d3x′. (29)

• Using the continuity equation, ∂ρ
∂t

+ ~∇ · ~J = 0, we have iωρ = ~∇ · ~J .
• Therefore (tarea):∫

~J(~x′)d3x′ = −
∫
~x′(~∇′ · ~J)d3x′ = −iω

∫
~x′ρ(~x′)d3x′. (30)

• Finally,

~A(~x) =
−iµ◦ω

4π
~p
eikr

r
, with ~p =

∫
~x′ρ(~x′)d3x′︸ ︷︷ ︸

elecric dipole

. (31)

.15

• We now calculate the ~E and ~H fields:

~H = ck2

4π
(n̂× ~p) eikr

r
,

~E =
√
µ◦ε◦ ~H × n̂,

(32)

where we see that electric dipole radiation is linearly polarized.
• The power emitted in direction n̂ can be written with dP = r2dΩn̂ · ~S ⇒,

dP

dΩ
=

1

2
<
[
r2n̂ · ( ~E × ~H∗)

]
,

=
c2

32π2

√
µ◦
ε◦
k4|~p|2 sin2(θ). (33)

• The total power is

P =
c2k4

12π
|~p|2. (34)

.16
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3.3 Magnetic dipole and electric quadrupole radiation

• The next term in the expansion of e−ikn̂·~x′ =
∑∞

n=0
(−ik)n
n!

(n̂ ·~x′)n corresponds
to n = 1.

• Eq. 28 gives:

~A(~x) =
µ◦
4π

eikr

r

(
1

r
− ik

)∫
~J(~x′)(n̂ · ~x′)d3x′. (35)

• This term originates magnetic dipole and electric quadrupole contributions.
To see this, we separate the integrand:

~J(~x′)(n̂ · ~x′) =
1

2

[
(n̂ · ~x′) ~J + (n̂ · ~J)~x′

]
︸ ︷︷ ︸

A

+
1

2
(~x′ × ~J)× n̂︸ ︷︷ ︸

B

. (36)

• We first consider the contribution of partB and identify the magnetization ~M,

~M =
1

2
(~x× ~J). (37)

.17

• Then, for the B part,

~A(~x) =
ikµ◦
4π

(n̂× ~m)
eikr

r
(1− 1

ikr
), with (38)

~m =

∫
~Md3x. (39)

• In the radiation zone, kr � 1, we obtain:

~A(~x) =
ikµ◦
4π

(n̂× ~m)
eikr

r
, (40)

~E(~x) = − k
2

4π

√
µ◦
ε◦

(n̂× ~m)
eikr

r
, (41)

~H(~x) = −
√
ε◦
µ◦

( ~E × n̂). (42)

• This contribution is called magnetic dipole radiation.
.18

• For the A part in the contribution from n = 1, after standard handling we get:

A =
iω

2

∫
~x′(n̂ · ~x′)ρ(~x′)d3x′, (43)

which represents order 2 moments of ρ(~x′), i.e. an electric quadrupole contri-
bution, which we will not develop.

.19
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4 Radiation from a single charge

4.1 Liénard-Wiechert potentials

• Consider a particle with charge q and trajectory ~r(t), with velocity ~u(t).
• We can apply the retarded solution with source terms ρ(~x, t) = qδ(~x− ~r(t)),

and ~j(~x, t) = ρ(~x, t)u(t), and thus obtain the resulting potentials (tarea):

Φ(~x, t) =
1

4πε◦

 q(
1− n̂(t′) · ~β(t′)

)
R(t′)


ret

, (44)

~A(~x, t) =
µ◦
4π

 q~u(
1− n̂(t′) · ~β(t′)

)
R(t′)


ret

, (45)

where ~R(t′) = ~x− ~r(t′), R = |~R|, n̂(t′) =
~R
R

, and ~β(t′) = ~u(t′)
c

. These are the
Liénard-Wiechert (L.-W.) potentials.

.20

• We can also calculate the corresponding electromagnetic field (tarea):

~E(~x, t) =

Evel︷ ︸︸ ︷ q

4πε◦

(1− β2)
(
n̂− ~β

)
R2(1− n̂ · ~β)3


ret

+

 q

4πε◦

(
n̂×

((
n̂− ~β

)
× ~̇β

))
cR
(

1− n̂ · ~β
)3


ret︸ ︷︷ ︸

Erad

(46)

with
~B(~x, t) =

1

c
n̂× ~E(~x, t). (47)

.21

• We see that far away from the particle, the term labelled Erad will eventually
dominate. In fact, for a Fourier component, or for harmonic motion with
~r(t) ∝ exp(iωt), we find that (tarea)

Erad

Evel

= β
R

λ
, (48)

and we see that the radiation term dominates if R � λ/β, sometimes also
called the far zone.

.22
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4.2 Larmor Formula

• In the far zone, with R → ∞, and in the Galilean limit (β � 1), the power
radiated per unit solid angle is (tarea):

dP

dΩ
=

µ◦
16π2

q2 a2 sin2(θ), (49)

in which a = |~̇u| and θ is the angle between n̂ and ~a. This is the Larmor
formula.

• By applying Eq. 49 to the case of an harmonically oscilating charge with
dipole ~p = q~r◦ exp(iωt), we can recover Eq. 33 (tarea).

• We therefore conclude that the wave zone as defined in Sec. 3.1 matches the
Galilean limit (see the discussion on the dipole approximation in Sec. 3.3 of
Rybicki & Lightman).

.23

4.3 Radiation reaction

• Let’s consider a periodic sistem, such that its mechanical state is identical
between times t1 and t2.

• Still in the Galilean limit, the total energy radiated by the charge between t1
and t2 is

W =
µ◦q

2

6πc

∫ t2

t1

a2dt. (50)

• Energy conservation requires the existence of ‘radiation reaction’ force Frad,
such that W is extracted from the particle’s kinetic energy,∫ t2

t1

dt ~Frad.~u = −W. (51)

• One expression for the radiation reaction is the Abraham-Lorentz formula,

~Frad =
µ◦q

2

6πc
~̇a. (52)

We can confirm that Eq. 52 indeeds fullfills Eq. 51 (tarea).
.24

5 Non-relativistic applications

• Thomson scattering (Rybicki & Lightman Sec. 3.4)
• Harmonically bound particles (Rybicki & Lightman Sec. 3.6)

.25
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