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1.1 General formulation
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• Let us first consider a single obstacle (or particle), whose maximum dimmen-
sion is d� λ.

• The incident wave can be described with

~Ei = ê◦E◦e
ikn̂◦·~x (1)

~Hi =

√
µ◦
ε◦
n̂◦ × ~Ei. (2)

• Note that we describe the incident polarization in terms of ê◦.
• When interacting with the target, the fields induce electric and magnetic dipoles

as in the case of static fields in the ‘static zone’ (save for the time dependence
exp(−iωt)).

• The induced dipoles can, in turn, generate electric and magnetic dipole radia-
tion, resulting in the fields ~Es y ~Hs.
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1.2 Scattering matrix
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• In the region outside the target, labelled 2, the fields are given by

~E2 = ~Ei + ~Es, (3)
~H2 = ~Hi + ~Hs. (4)

• It is convenient to project the fields on the scattering plane. For the incident
plane wave,

~Ei = (E◦‖êi‖ + E◦⊥êi⊥)ei(kz−ωt)

= E‖êi‖ + E⊥êi⊥, (5)

where êi‖ × êi⊥ = êz.
• In the wave zone we know that the field emitted by the induced dipoles, i.e.

the scattered field, will converge to a transverse wave, i.e. ‖ ~Es‖ ∝ eikr

r
, so

~Es = E‖sê‖s + E⊥sê⊥s, (6)

with
ê‖s = êθ, ê⊥s = −êφ, and ê⊥s × ê‖s = êr. (7)
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• Because of the linearity of the Maxwell equations, the scattered fields will be
linear combinations of the incident fields.

• We can thus relate the scattered and incident fields in terms of the amplitude
scattering matrix, with coefficients {si}4

i=1:(
E‖s
E⊥s

)
=

eikr

−ikr

(
s2 s3

s4 s1

)(
E‖i
E⊥i

)
. (8)
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• The time-averaged Poynting vector anywhere outside the target, i.e. in region
2, is

~S2 =
1

2
<
[
~E2 × ~H∗2

]
= ~Si + ~Ss + ~Sext, (9)

where

~Si =
1

2
<
[
~Ei × ~H∗i

]
, (10)

~Ss =
1

2
<
[
~Es × ~H∗s

]
, (11)

~Sext =
1

2
<
[
~Ei × ~H∗s + ~Es × ~H∗i

]
. (12)

• The notation “ext” anticipates that this term, which corresponds to the interac-
tion between the scattered and incident fields, will cause the extinction of the
incident specific intensity.
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• The Stokes parameters for the scattered fields are similar to the case of plane
waves seen in Chap. B, Sec. 2.2.

• For the scattered field we use ê‖ and ê⊥ rather than ê1 and ê2:

Is = 〈E‖sE∗‖s + E⊥sE
∗
⊥s〉 (13)

Qs = 〈E‖sE∗‖s − E⊥sE∗⊥s〉, (14)
Us = 〈E‖sE∗⊥s + E⊥sE

∗
‖s〉, (15)

Vs = i〈E‖sE∗⊥s − E⊥sE∗‖s〉. (16)
.10

• We can now relate the scattered Stokes parameters in terms of the incident
Stokes parameters, using the amplitude scattering matrix

Is
Qs

Us
Vs

 =
1

k2r2


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44




Ii
Qi

Ui
Vi

 . (17)
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• For example, (TAREA):

S11 =
1

2
(‖S1‖2 + ‖S2‖2 + ‖S3‖2 + ‖S4‖2), (18)

S12 =
1

2
(−‖S1‖2 + ‖S2‖2 − ‖S3‖2 + ‖S4‖2), (19)

S21 =
1

2
(−‖S1‖2 + ‖S2‖2 + ‖S3‖2 − ‖S4‖2), (20)

S33 =
1

2
< [S1S

∗
2 + S3S

∗
4 ] . (21)
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1.3 Extinction

• Consider a sphere S centered on a target particle. The net flux of the incident
Poynting vector through S is null, so the flux of the total Poynting vector must
correspond to radiative energy produced or absorbed by the particle. .12

• The total Poynting vector is ~S = ~Si + ~Ss + ~Sext (see Eqs. 9, 11,12,12), and we
write its flux through S as

Wa = −
∫
S

~S · êrdS, (22)

Wa = Wi −Ws +Wext, (23)

where Wi = −
∫
~Si · êrdS, Ws = +

∫
~Ss · êrdS and Wext = −

∫
~Sext · êrdS .

• By symmetry Wi=0, so
Wext = Wa +Ws, (24)

i.e. Wext is the sum of the power absorbed by the particle and that of the
scattered radiation. .13
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• We consider a linearly polarized plane wave with ~Ei ‖ x̂. In the wave zone,
we can write the fields as

~Es =
eik(r−z)

−ikr
~XEi, and (25)

~Hs =
k

ωµ
~er × ~Es, (26)

where ~X is the vector scattering amplitude,

~X = (s2 cos(φ) + s3 sin(φ))ê‖s+

(s4 cos(φ) + s1 sin(φ))ê⊥s. (27)

Note that ~X is dimensionless, and also depends on θ through the si.
.14

• After some calculation (see BH83), in the wave zone (lim kr →∞, tarea),

Wext = Ii
4π

k2
<[( ~X.êx)|θ=0]. (28)

• We introduce the extinction cross-section

Cext =
Wext

Ii
, (29)

and following Eq. 24, Cext = Ca + Cs.
• Using Eqs. 25 and Eqs. 26, we get

Cs =

∫
4π

‖ ~X‖2

k2
dΩ. (30)

• We identify the differential scattering cross section,

dσs
dΩ

(θ, φ) =
‖ ~X‖2

k2
, (31)

and the scattering phase function

Φ(θ, φ) =
1

Cs

dσs
dΩ

. (32)

.15
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• Note that the total cross sections for an assembly of randomly distributed par-
ticles is additive (see Sec. 2.2 below). If the particles are spheres, or else are
also randomly oriented, the Φ only depends on θ.

• Another useful quantity is the asymmetry parameter,

g = 〈cos(θ)〉 =

∫
4π

cos(θ)Φ(θ, φ)dΩ. (33)

• The cross sections are usually reported in terms of the extinction, scattering
and absorption efficiencies,

Qext =
Cext

Σ
, Qs =

Cs

Σ
, and Qa =

Ca

Σ
, (34)

where Σ is the projected area of the target in the direction of incidence - i.e.
Σ = πa2 for a sphere with radius a.

.16

• The above cross-sections in Eqs. 29 and 30 were derived for x−polarized in-
cident light, i.e. Cext,x and Cs,x, but are easily extended to y−polarized light,
Cext,y and Cs,y.

• For natural light,

Cext =
1

2
(Cext,x + Cext,y) and Cs =

1

2
(Cs,x + Cs,y). (35)

• If the scattering volume, which encompases all targets, includes a continuum
of targets with number density n, then we may introduce the extinction coeffi-
cient which attenuates the incident specific intensity Iν ,

αext = nCext, (36)

and
dIν = −αextIνds. (37)

.17

2 Rayleigh scattering

2.1 Single target

• In the wave zone and in the Rayleigh regime (target � λ), we know from
Dipolar Radiation (Chapter C) that the fields in direction n̂ are

~Es =
1

4πε◦
k2 e

ikr

r

[
(n̂× ~p)× n̂− n̂× ~m

c

]
(38)

~Hs =

√
µ◦
ε◦
n̂◦ × ~Es. (39)
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• We extend the concept of dP
dΩ

to select a polarization state ê in the scattered
wave, and after normalizing by the incident flux, we obtain the differential
scattering cross section dσ

dΩ
= dP

SidΩ
:

dσ
dΩ

(n̂, ê; n̂◦, ê◦) = r2 |ê∗· ~Es|2

|ê∗◦· ~Ei|2
,

= k4

(4πε◦E◦)2

∣∣ê∗ · ~p+ (n̂× ê∗) · ~m
c

∣∣2 . (40)

.18

• As an example let’s consider the case where the target is a small dielectric
sphere, with radius a, µ/µ◦ = µr = 1, and with ε = ε◦εr(ω).

• In the static zone, where d� r � λ, the fields are quasistatic, (tarea)

~p = 4πε◦

(
εr − 1

εr + 2

)
a3 ~Ei, (41)

and there is no magnetic dipole moment.
• The scattering cross section is then, for polarization ê,

dσ

dΩ
= k4a6

∣∣∣∣εr − 1

εr + 2

∣∣∣∣2 |ê∗ · ê◦|2 . (42)

.19

• For natural light, or non-polarized incident radiation, we take the average:〈
dσ

dΩ

〉
= k4a6

∣∣∣∣εr − 1

εr + 2

∣∣∣∣2 〈|ê∗ · ê◦|2〉 . (43)

• In terms of the polarizations parallel and perpendicular to the plane of scatter-
ing (n̂, n̂◦), for spherical coordinates with n̂◦ ‖ ẑ (TAREA):

dσ‖
dΩ

=
1

2
k4a6

∣∣∣∣εr − 1

εr + 2

∣∣∣∣2 cos2(θ) (44)

dσ⊥
dΩ

=
1

2
k4a6

∣∣∣∣εr − 1

εr + 2

∣∣∣∣2 (45)

• For Stokes I we get

dσ

dΩ
= k4a6

∣∣∣∣εr − 1

εr + 2

∣∣∣∣2 1

2
(1 + cos2(θ)), (46)

and a measure of the polarization fraction is Π(θ) ≡ (dσ⊥
dΩ
− dσ‖

dΩ
)/I = sin2(θ)

1+cos2(θ)
.

.20
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2.2 Scattering for N targets

• For a system with N targets, we use the superposition principle,

dσ

dΩ
(n̂, ê; n̂◦, ê◦) = r2

|ê∗ ·
∑N

j=1
~Es,j|2

|ê∗◦ · ~Ei|2
. (47)

• In the radiation zone, |~x− ~x′| ∼ r − n̂ · ~x′,

dσ

dΩ
=

k4

(4πε◦E◦)2

∣∣∣∣∣
N∑
j=1

[
ê∗ · ~pj + (n̂× ê∗) · ~mj

c

]
ei~q·~xj

∣∣∣∣∣
2

, (48)

where q = kn̂◦ − kn̂ and where the {xj} are the target positions.
• If all targets are identical,

dσ

dΩ
=

dσ

dΩ

∣∣∣∣
1

F(~q), where F(~q) =

∣∣∣∣∣∑
j

ei~q·~xj

∣∣∣∣∣
2

. (49)

.21

• If the positions ~xj are random (TAREA),

〈F(~q)〉 = 〈

∣∣∣∣∣∑
j

ei~q·~xj

∣∣∣∣∣
2

〉 ≈ N, (50)

and
dσ

dΩ
≈ N

k4

(4πε◦E◦)2

∣∣∣∣∣
N∑
j=1

[
ê∗ · ~pj + (n̂× ê∗) · ~mj

c

]
ei~q·~xj

∣∣∣∣∣
2

. (51)

.22

• If the targets are regularly ordered, for instance in a cubic network por N1 ×
N2 ×N3 with spacing a (TAREA),

F(~q) = N2

[
sin2

(
1
2
N1q1a

)
sin2

(
1
2
N2q2a

)
sin2

(
1
2
N3q3a

)
N2

1 sin2
(

1
2
q1a
)
N2

2 sin2
(

1
2
q2a
)
N2

3 sin2
(

1
2
q3a
)] , (52)

where q = q1ê1 + q2ê2 + q3ê3.
.23
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3 Diffraction

• The problem of diffraction is similar to scattering, except that we specify the
values of the fields at the edges or at the surfaces of the targets.

• Consider a scalar field ψ(~x, t) which satisfies the wave equation. For a har-
monic component, with time dependence ∝ exp(−iωt),

(∇2 + k2)ψ(~x) = 0. (53)

• We want to solve the Helmholtz Equation (Eq. 53) for a wave reflected/trans-
mitted at a surface superficie S1. We close space with another surface, S2,
which we take out to∞.

.24

• We typical use ψ = 0 on S1, except in possible openings.
• Let us consider the following Green function GD:

GD(~x, ~x′) = G(~x, ~x′) + F (~x, ~x′), (54)

where
(∇2 + k2)G(~x, ~x′) = −δ(~x− ~x′), (55)

and
(∇2 + k2)F (~x, ~x′) = 0. (56)

• We adjust F so that GD(~x, ~x′) = 0 if ~x ∈ S1.
.25

• The Green Theorem (after an extension to Eq. 53), using the pair GD and ψ,
yields (tarea):

ψ(~x) =

∮
S

[
ψ(~x′)n̂′ · ~∇′GD(~x, ~x′)−GD(~x, ~x′)n̂′ · ~∇′ψ(~x′)

]
dS ′ (57)

and using the property that GD(~x, ~x′) = 0 if ~x′ ∈ S,

ψ(~x) =

∮ [
ψ(~x′)n̂′ · ~∇′GD(~x, ~x′)

]
dS ′. (58)

• Note the absence of the volume integral in the application of Green’s Theo-
rem that results in Eq. 58, which reflects the absence of sources in the wave
equation.

.26
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• As an example we focus on the case where S1 is an infinite plane (at z = 0).
• The Green function for the wave equation (Chapter C) is given by:

G(~x, ~x′) =
1

4π

eikR

R
, with ~R = ~x− ~x′. (59)

• We use the method of images to determine F :

F = − 1

4π

eikR
′

R′
, with ~R′ = ~x− ~x′′, (60)

where ~x′′ is symmetrical to ~x relative to z = 0.
• By design the Green function

GD(~x, ~x′) =
1

4π

(
eikR

R
− eikR

′

R′

)
, (61)

cancels for ~x′ ∈ S1.
.27

• Injecting GD (Eq. 61) in the Green Theorem (Eq. 58) we get to (tarea):

ψ(~x) =
k

2πi

∮
S1
ψ(~x′)

n̂′ · ~R
R2

eikR
[
1− 1

ikR

]
dS ′, (62)

where we have used that when S2 → ∞, ψ ∼ eikR/R on S2, and ∇′GD ∼
1/R2, so that the integrand on S2 decays faster than (1/R2).

• If we consider that ψ(~x′) = 0 on S1 except for an opening, in the limit z →∞,
n̂′·~R
R
∼ 1,

ψ(~x) =
k

2πi

∫
opening

eikR

R
ψ(~x′)dS ′, (63)

where we recognize the “secondary sources” invoked in Huygens’ Principle.
.28

• For the vectorial case of the electric field difracted by an opening in a plane
conductor at z = 0, a detailed calculation gives (see Jackson 10.6 and 10.7),

~E(~x) =
1

2π
~∇×

∫
(n̂× ~Ei)

eikR

R
dS ′. (64)

• In the region z → ∞, we expect that ~E will be a wave, and if ~Ei is a plane
wave,

~E(~x) ≈ ik

2π
n̂× (n̂′ × ~Ei)

∫
eikR

R
dS ′. (65)

.29
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4 Mie theory

4.1 Scattering by a sphere

• Away from the Rayleigh regime, and if the target does not satisfy diffraction
boundary conditions (such as for a conductor), then in order to obtain the dif-
ferential scattering cross section we need to solve the Helmholtz equation for
each harmonic component of the fields, subject to interface boundary condi-
tions on the surface of the target (S):[

~E2(~x)− ~E1(~x)
]
× n̂ = 0 and (66)[

~H2(~x)− ~H1(~x)
]
× n̂ = 0, for any ~x ∈ S (67)

• The problem is solved by expanding the incident and scattered electric field
in a complete set of functions, composed of Legendre polynomials for the θ
part, and of spherical Bessel functions for the radial part.

.30

• The solution is expressed in terms of the size parameter,

x = ka =
2πa

λ
, (68)

and of m = k1/k, i.e. the real part of the refractive index inside the target.
• The expansion of the scattered fields involves the following coefficients (Eq.

4.53 Bohren & Humman 1998)

an =
m2jn(mx)[xjn(x)]′ − µ1jn(x)[mxjn(mx)]′

m2jn(mx)[xh
(1)
n (x)]′ − µ1h

(1)
n (x)[mxjn(mx)]′

, (69)

bn =
µ1jn(mx)[xjn(x)]′ − jn(x)[mxjn(mx)]′

µ1jn(mx)[xh
(1)
n (x)]′ − h(1)

n (x)[mxjn(mx)]′
, (70)

where µ1 is the magnetic permitivity of the target.
.31

• The cross-sections are (Eqs. 4.61 and 4.62 of Bohren & Huffman 1998):

Csca =
2π

k2

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
and (71)

Cext =
2π

k2

∞∑
n=1

(2n+ 1)<{an + bn}. (72)

.32
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• The angle-dependent amplitude scattering matrix is diagonal, s3 = s4 = 0,
and

s1 =
∑ 2n+ 1

n(n+ 1)
(anπn + bnτn) and (73)

s2 =
∑ 2n+ 1

n(n+ 1)
(anτn + bnπn), where (74)

πn =
P 1
n

sin(θ)
and τn =

dP 1
n

dθ
, (75)

and where P 1
n is the Legendre function associated to the corresponding Leg-

endre polynomial

Pm
n (µ) = (1− µ2)m/2

dmPn(µ)

dµm
, (76)

with µ = cos(θ).
.33

• The scattering phase function for spheres can be obtained from Eqs. 27, 31
and 32:

Φ(θ) = 2πΦ(θ, φ) = 2π
s2

1 + s2
2

k2Csca

= 4π
S11

k2Csca

. (77)
.34

• Standard packages are available to compute the radiative transfer parameters
using Mie theory. In what follows, we show the result of the bhmie.f code,
available here: https://en.wikipedia.org/wiki/Codes_for_
electromagnetic_scattering_by_spheres. We used the Python
transcription and the wrappers from Kees Dullemond, available as part of the
RADMC3D Monte-Carlo radiative transfer package: http://www.ita.
uni-heidelberg.de/˜dullemond/software/radmc-3d/download.
html.

• The cross sections C are related to the opacities κ by C = κ ∗m, where m is
the mass of the target sphere.

• Here the phase function Φ is normalized such that Φ(θ, φ) = 1 corresponds to
isotropic scattering.

• The next 3 plots correspond to a = 10µm, and used the pyrmg70 optical
constants.

.35
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• TAREA: reproduce the previous 3 plot for a 1 mm-sized sphere composed
of pure graphite, and add an extra plot for the grain albedo. Plot the phase
function at a wavelength of 1 mm.

.39
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