Part IV
Free-free, Synchrotron and Compton
Scattering
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1 Relativity

1.1 Quadrivectors

In this section we switch to CGS units, better adapted to describe the symmetry
between E and B (bibliography: Rybicki & Lightman).
e We define z# = (ct, x,y, z) as the contravariant position quadrivector, whose
norm is s* = 7, 2*z" (using the implicit sum notation).
e We also introduce z,, = (—ct, z, y, 2) as the covariant position quadrivector.
o 1, =n,x", with
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e With n* =1n,,, we have z* = n""z,.
e Note that n*7n,, = do¥.

e We change reference system from S to &', in uniform translation with velocity
v towards 7 relative to S.
e A contravariant 4V transforms as
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with f =v/c,and v = 1/4/1 — v?/c%.

For a covariant 4V (tarea),
), = /~\M”$Z,, with /~\M” = N7 (3)
A .. is the inverse of Af:

ATAS =6, and A = oo, )

The product of two 4Vs A* and B* is Lorentz invariant:
A'B, = A"B),. (5)

We also have the velocity 4V, U* = %, in which dr is the relativistic interval.
(i.e. of proper time) between x* and x* + dx*.

e In components (tarea), U* = v, (c, @), with v, = 1/4/1 — u?/c2.
e If we change to U’ = A% U,

Y = 7 7u(1 — % cos(0)), with 0 = Z(, 7). 6)

In the system that is bound to a particle with velocity @, U’ = ¢(1,0), for a 4V
A¥,
10 1 1 / /
A0 = _ZUFA, = —SUMAL.. (7)
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We note that the phase of a plane wave must be Lorentz invariant because the
simultaneous cancellation of £ and B in one system implies their cancellation
in any other system.

Let’s introduce k" = (w/c, k):

kiz, = k-%—wt= invariant = k" is4V. (8)
We can use Eq.[7]to deduce the relativistic Doppler effect (tarea)

k'’ =W = -Urk, = wy(l — %COS(@)). )




1.2

The gradient operator is another example of 4V. If A is a scalar invariant, then

O\
A = g is a covariant 4V, and (10)
A .
AM* = —— is a contravariant 4V. (11D
0z,

Proof: from z¥ = A #”x’“, we have that gxi,; = A/, and since N =),

Vo dx” O\
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We extend the properties of 4Vs to tensors in general: a tensor of orden n
transforms as the product of n 4Vs.
For example,
!
T = A AV T7,

T = AEATTO

Covariance in electrodynamics

Charge conservation, % + V-J= 0, can be written as

J", =0, using the four-current J" = (p¢, J). (13)
In the Lorentz Gauge , and using CGS units,
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VR — o = —dmp = 0,0°0. (15)
With A = (&, A),
4 2
Ao = A g5 o which Afe — 948 (16)
’ c ’ 0T,

The Lorentz gauge VA4 %%—‘f = 0 can be written simply as A% , = 0.




In order to write the Maxwell equations in their covariant form, we introduce
the field tensor

Fo=A4,,—A4,.. (17)
WithB=V x Aand E = —V® — %%—f (tarea): 2

0 —-E, —E, —E.

» _| B 0 B. -B
w=|E, —B., 0 B,
E. B, -B, 0

(18)

—

The Maxwell equations V-E = 47p and V xB-— %%—f = %j can be written
(tarea)

, 4
Fr= 7J,, (19)
The ‘internal’ equations V-B=0andV x E + %%’? = () are written (tarea)
F,u,u,a + Fcr,u,u + FI/O‘“u, =0. (20)

We use the covariance of F),, to infer the transformation laws for the fields E
y B: o

Fl,=A\SF.s. 21)
In terms of components we get (tarea):

Ej = E),_ Bj =By,

.S S o 22
F, =~v(FE, +pxB), B, =~vB,+8xE). 22)
We see that l? and B get mixed up, and if B =0in S, then when changing to
S’ we have B’ # 0.

In order to extend the Lorentz force, we introduce the momentum quadrivector
(four-momentum) P* = m,U?, where m, is the rest mass. We write P* =
(E/c, P), in which F is the total energy of the particle (which is £ = m,c? at
rest).
The acceleration 4V (four-acceleration) is
dU"
at = 23

dr’ (23)
and in order to recover Newton’s 2nd law in the non-relativistic limit, the four-
force must be

apr
dr -

¥ =mga" = (24)
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e We write the 4-Lorentz force with

pr=dpn

c

—

e in components, (tarea) F = q(g X é) +qF.

(25)
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