Radiative Processes

Simon Casassus Astronomía, Universidad de Chile http:://www.das.uchile.cl/~simon

- I Radiative Transfer
- II Electromagnetic wave propagation
- **III** Radiation
- IV Scattering and Diffraction
- V Free-free, Synchrotron and Compton Scattering
- VI Radiative Transitions

Part I

Radiative Transfer

- 1 Specific Intensity
- **2** Transfer equation
- **3** Opacity and optical depth

4 Solutions of the transfer equation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

1 Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

- Emission Absorption Scattering Dicrete medium
- **3 Opacity and optical depth** Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

1 Specific Intensity

Definition of specific intensity

Moments of specific intensity

2 Transfer equation

- Emission Absorption Scattering Dicrete medium
- 3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity Definition of specific intensity

Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

1.1-Definition of specific intensity

- In geometrical optics we approximate the transport of radiative energy along straight lines, or 'rays', in direction k.
- If *dE* is the amount of radiative energy crossing an area $d\vec{A} = dA\hat{n}$ in the direction \hat{k} , within a solid angle $d\Omega$, and with a frequency range within $[\nu, \nu + d\nu]$, then the monochromatic specific intensity $I_{\nu}(\hat{k}, \vec{x}, t)$ is defined by

$$dE = I_{\nu}(\hat{k}, \vec{x}, t) \, \hat{k} \cdot \hat{n} \, dA \, d\Omega \, d\nu \, dt.$$

Specific Intensity Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation

(1)

1.1- Definition of specific intensity

- Geometrical optics can only be applied to cases where the wavelength λ is much smaller than the scale of structure in the propagation medium, 'a'. In other words, it cannot be used to describe the interaction of optical light with atoms, and neither can it be used to describe diffraction phenomena which become evident when $\lambda \sim a$.
- To see this we follow Rybicky & Lightman (Sec. 2.6). Because of the uncertainty principle, for a ray with $\hat{k} = \hat{z}$,

$$dxdp_x dydp_y = p^2 dA d\Omega \gtrsim h^2,$$
 (2)

and

$$dAd\Omega \gtrsim \lambda^2$$
. (3)

- We see that if dA ~ λ², then dΩ ~ 1, and there is no constraint on direction. Similar constraints apply to time, with dνdt ≥ 1.
- Thus the transfer theory described below is applicable when λ ≪ a.

Specific Intensity Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation

1.1- Definition of specific intensity

 In the absence of interaction with matter, *I*(*k̂*, *x̄*) is constant for any point *x̄* along the ray *k̂*. Proof: see Shu Vol. I.

Definition of specific intensity Moments of specific

intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

1 Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

- Emission Absorption Scattering Dicrete medium
- 3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

1.2- Moments of specific intensity

• The mean intensity at \vec{x} is simply

$$J_{
u}(ec{x})=rac{1}{4\pi}\int d\Omega I_{
u}(\hat{k},ec{x}).$$

In spherical coordinates, with $\mu = \cos(\theta)$,

$$J_{
u} = rac{1}{4\pi} \int_{\Phi=0}^{2\pi} d\Phi \int_{\mu=-1}^{1} d\mu \, l_{
u}(\mu, \Phi)$$

The monochromatic radiative energy density is

$$J_
u = rac{4\pi}{c} J_
u.$$

and the bolometric radiative energy density is

I

$$u = \int d\nu u_{\nu}.$$
 (7)

(6)

(4)

(5)

1.2- Moments of specific intensity

• The net flux in the direction \hat{n} and at point \vec{x} is

$$\mathcal{F}_{
u}(\hat{n}) = \int d\Omega I_{
u}(\hat{k}, ec{x}) \cos(heta),$$

where θ is the angle between \hat{k} and \hat{n} . With $\mu = \cos(\theta)$,

$$F_{\nu}(\hat{n}) = \int_{\Phi=0}^{2\pi} d\Phi \int_{\mu=-1}^{1} d\mu \,\mu l_{\nu}(\mu, \Phi). \tag{9}$$

• Given that the photon momentum is ϵ/c , with $\epsilon = h\nu$, the radiation pressure in direction \hat{n} is

$$p(\hat{n}) = \frac{2}{c} \int d\Omega \cos^2(\theta) I_{\nu}(\hat{k}, \vec{x}), \qquad (10)$$

or, in terms of $\mu = \cos(\theta)$,

$$p(\hat{n}) = \frac{2}{c} \int_{\Phi=0}^{2\pi} d\Phi \int_{\mu=-1}^{1} d\mu \, \mu^2 I_{\nu}(\mu, \Phi). \tag{11}$$

(8)

Emission Absorption Scattering Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation

1.2- Moments of specific intensity

 Problem: consider a sphere with radius *R* which emits a uniform specific intensity field from its surface, *B*. Proove that the flux in direction r̂ a distance r away from the center of the sphere is

$$F = \pi B \left(\frac{R}{r}\right)^2.$$
 (12)

The flux at the surface of the sphere is thus $F = \pi B$.

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth Source Function

Solutions of the

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

- Emission Absorption Scattering Dicrete medium
- 3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

2-Transfer equation

 In the presence of matter the spec. int. field may change with position (and time),

$$\frac{\partial I_{\nu}}{c\partial t} + \hat{k} \cdot \vec{\nabla} I_{\nu} = \text{sources} - \text{sinks.}$$
(13)

- The sources correspond to the emission of radiative energy by matter, and to reflection in the direction k̂.
- The sinks correspond to absorption of radiative energy by matter, or by reflection out of the direction j.
- Reflected light is also called 'scattered' light.

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

1 Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation Emission

Absorption Scattering Dicrete medium

3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission

Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

2.1-Emission

 In the presence of mater the specific intensity field may change with position. A volume element dV = ds dA emits an energy

$$dE = j_{\nu} d\nu dV dt d\Omega, \qquad (14)$$

towards the direction of $d\Omega$, where $j_{\nu}(\hat{k})$ is the emission coefficient.

From the definition of specific intensity,

$$dE = dI_{\nu}(\hat{k}', \vec{s}, t) \, \hat{k}' \cdot \hat{n}' dA' \, d\Omega' \, d\nu \, dt, \qquad (15)$$

for any surface $d\vec{A}'$ centered on \vec{s} . If we choose $d\vec{A} = d\vec{A}'$, $\hat{k} = \hat{s}$ and $d\Omega = d\Omega'$ then $\hat{k} \cdot \hat{n} = 1$. In the absence of absorption I_{ν} is constant along \hat{s} , so the increase in I_{ν} due to the contribution from dV at \vec{s} is

dl = i ds

$$\frac{dV = dAds}{\frac{dQ'}{\vec{s} + d\vec{s}}} \xrightarrow{dA} \xrightarrow{dA}$$

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission

Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

(16)

Solutions of the transfer equation

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

Emission Absorption Scattering Dicrete mediur

3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific

intensity

Transfer equation

Emission

Absorption

Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

2.2- Absorption

 For pure absorption, without scattering or emission, and if the absorption is caused by infinitely small particles that do not shadow each other inside a volume dV = dsdA, we expect

$$dI_{\nu} = -\alpha_{\nu} I_{\nu} ds, \qquad (17)$$

• The absorption coefficient α_{ν} can be connected to the effective cross-sectional area σ_{ν} of the absorbers. The total energy absorbed in volume dV is

$$dE = -I_{\nu} n\sigma_{\nu} dV d\Omega dt ds, \qquad (18)$$

where the minus sign accounts for dE being removed from the radiation field.

The difference in specific intensity is given by

$$dE = dI_{\nu}(\hat{k}, \vec{x}, t) \, dA \, d\Omega \, d\nu \, dt, \tag{19}$$

S0

$$\alpha_{\nu} = n \,\sigma_{\nu}.\tag{20}$$

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission

Absorptio

Scattering Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

- Emission Absorption Scattering Dicrete medium
- 3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

- Emission
- Absorption
- Scattering
- Dicrete medium
- Opacity and optical depth
- Source Function

Solutions of the transfer equation

2.3- Scattering

 Reflection of photons, rather than absorption, will also decrease the specific intensity along a ray k. In analogy with pure absorption, the corresponding decrease in specific intensity will be

$$dI_{
u} = -lpha_{
u}^{
m sca}I_{
u}\,ds,$$

with $\hat{s} = \hat{k}$.

• Photons coming from all directions may also be reflected into the ray \hat{k} . To describe the probability of reflection from direction \hat{k}' into direction \hat{k} we use the phase function $\Phi_{\nu}(\hat{k}, \hat{k}')$ (also called the 'scattering probability density'),

$$dI_{\nu} = \alpha_{\nu}^{\rm sca} \oint \Phi_{\nu}(\hat{k}, \hat{k}') I_{\nu}(\hat{k}') d\Omega' \, ds.$$
 (22)

The phase function is normalized and symmetric:

$$\oint \Phi_{\nu}(\hat{k},\hat{k}')d\Omega' = 1 = \oint \Phi_{\nu}(\hat{k}',\hat{k})d\Omega.$$
(23)

Specific Intensity Definition of specific intensity Moments of specific intensity

Transfer equation

Emission

(21)

Absorption

Scattering

Dicrete medium

Opacity and optical depth

Solutions of the transfer equation

2.3- Scattering

• The full transfer equation in a continuous medium is thus:

$$\frac{dI_{\nu}}{ds} = j_{\nu}^{abs} - \alpha_{\nu}^{abs} I_{\nu} - \alpha_{\nu}^{sca} I_{\nu} + \underbrace{\alpha_{\nu}^{sca} \oint \Phi_{\nu}(\hat{k}, \hat{k}') I_{\nu}(\hat{k}') d\Omega'}_{j_{\nu}^{scat}}, \quad (24)$$

with $\hat{k} = \hat{ds}$, and where we have added the superscript 'abs' to the emission coefficient in the absence of scattering.

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission

Absorption

Scattering

Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation

2.3- Scattering

In thermodynamical equilibrium, I_{\nu}(k, x) = B_{\nu}(T) and since the temperature field must be uniform, d_{\nu}/ds = 0. Since the phase function is normalized, we have Kirchoff's law:

$$j_{\nu}^{\rm abs} = \alpha_{\nu}^{\rm abs} \boldsymbol{B}_{\nu}.$$
 (25)

- Note that in Eq. 24, the term highlighted as *j*^{scat}_ν effectively enters as an emission coefficient, i.e. it is not proportional to *I*_ν.
- Grouping together terms, Eq. 24 can also be written

$$\frac{dI_{\nu}}{ds} = j_{\nu} - \alpha_{\nu} I_{\nu}, \qquad (26)$$

Specific Intensity Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption

Scattering

Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

with $j_{\nu} = j_{\nu}^{abs} + j_{\nu}^{sca}$ and $\alpha_{\nu} = \alpha_{\nu}^{abs} + \alpha_{\nu}^{sca}$.

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

- Emission Absorption Scattering Dicrete medium
- 3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

- Emission
- Absorption
- Scattering
- Dicrete medium
- Opacity and optical depth Source Function
- Solutions of the transfer equation
- The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

2.4- Dicrete medium

- In a discrete medium the coupling of radiation and matter occurs through radiative transitions, each of which bears a line-profile $\phi(\nu)$ which is narrowly centred on the transition frequency ν_{\circ} .
- The rates of radiative transitions can be described using the Einstein coefficients:
 - A_{ji}: probably of spontaneous radiative decay per unit time per absorber (units for A are s⁻¹).
 - $B_{ij}\overline{J}$: probably of absorption per unit time per absorber, with $\overline{J} = \int d\nu \phi(\nu) J_{\nu}$ is the frequency-averaged mean specific intensity (so that MKS units of *B* are $s^{-1}/(Jy \operatorname{sr}^{-1})$).
 - $B_{ji}\overline{J}$: probably of stimulated emission per unit time.

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission

Absorption

Scattering

Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation

2.4- Dicrete medium

 The line profiles φ(ν) are described with Lorentzians, and their width (or the line-widths), Δν, are directly connected to the spontaneous decay rate via the time-energy uncertainty principle, ΔEΔt ≥ ħ/2:

$$\Delta t \sim rac{1}{A_{ji}} \sim rac{1}{\Delta
u}$$

Detailed balance connects the Einstein coefficients:

$$g_i B_{ij} = g_j B_{ji}, \qquad (28)$$

and

$$A_{ji} = \frac{2h\nu_{ji}^3}{c^2} B_{ji}.$$
 (29)

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission

Absorption

Scattering

(27)

Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation

2.4- Dicrete medium

- In a discrete and isotropic medium, the RT equation in its compact form (Eq. 26) is also valid, and the emission and absorption coefficients are directly connected to the Einstein coefficients. In this case the phase function is constant, $\Phi_{\nu}(\hat{k}, \hat{k}') = 1/(4\pi)$.
- The emission coefficient is

$$\dot{J}_{
u}=rac{h
u_{\circ}}{4\pi}n_{j}\mathcal{A}_{ji}\phi(
u).$$

This coefficient includes what would be called 'scattering' for the lines: a de-excitation following the absorption of the same photon.

• The absorption coefficient is

$$\alpha_{\nu} = \frac{h\nu_{\circ}}{4\pi} (n_i B_{ij} - n_j B_{ji}) \phi(\nu).$$
(31)

Note that stimulated emission acts as negative absorption.

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission

Absorption

Scattering

(30)

Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

Emission Absorption Scattering Dicrete medium

3 Opacity and optical depth

Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

3- Opacity and optical depth

- It is customary to use the opacities κ rather than the absorption coefficients α, with α = κρ, where ρ is the mass density.
- We also define the optical depths along a ray,

$$au_{
u}^{
m abs} = \int d{m s} \, lpha^{
m abs} = \int d{m s}
ho \kappa^{
m abs},$$

and

$$au_{
u}^{
m sca}=\int {\it ds}\, lpha^{
m sca}=\int {\it ds}
ho\kappa^{
m sca}.$$

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

(32)

(33)

Solutions of the transfer equation

3- Opacity and optical depth

and similarly for scattering.

• The exponential decay in the pure absorption case suggests that $\exp(-\tau_{\nu}^{abs})$ is the probability that a photon survives the optical depth τ_{ν}^{abs} without absorption. This allows us to estimate the mean optical depth travelled by all photons:

$$\langle \tau_{\nu} \rangle = \int_{0}^{\infty} \tau_{\nu} \exp(-\tau_{\nu}) d\tau_{\nu} = 1.$$
 (34)

The photon mean free path *l_ν* is the corresponding distance, i.e.

$$I_{\nu}^{\mathrm{abs}}=rac{1}{lpha_{
u}^{\mathrm{abs}}}=rac{1}{n\sigma_{
u}^{\mathrm{abs}}},$$

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

(35)

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

Emission Absorption Scattering Dicrete medium

3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

3.1- Source Function

• Changing variables to $d\tau_{\nu} = (\alpha_{\nu}^{abs} + \alpha_{\nu}^{sca})ds$, the full transfer equation can be written as

$$rac{dI_{
u}}{d au_{
u}}= \underbrace{rac{j_{
u}^{\mathrm{abs}}+j_{
u}^{\mathrm{sca}}}{lpha_{
u}^{\mathrm{abs}}+lpha_{
u}^{\mathrm{sca}}} - I_{
u},$$

where we have defined the Source Function S_{ν} .

- In the absence of scattering, i.e. if α_ν^{sca} = 0, then S_ν = B_ν.
- For an isotropic phase function, i.e. if $\Phi_{\nu}(\hat{k}, \hat{k}') = 1/(4\pi)$, the source function is

$$S_{\nu} = \frac{j_{\nu}^{\text{abs}} + \alpha_{\nu}^{\text{sca}} J_{\nu}}{\alpha_{\nu}^{\text{abs}} + \alpha_{\nu}^{\text{sca}}}$$
(37)

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

(36)

Opacity and optical depth

Source Function

Solutions of the transfer equation

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

- Emission Absorption Scattering Dicrete medium
- 3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

Emission Absorption Scattering Dicrete medium

3 Opacity and optical depth Source Function

Solutions of the transfer equation The uniform slab

Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

The uniform slab

Random walks

4.1- The uniform slab

 In the widely used, but seldom exact, case of no scattering, the equation of radiative transfer Eq. 36 is

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}, \qquad (38)$$

where $S_{\nu} = j_{\nu}^{\rm abs}/\alpha_{\nu}^{\rm abs}$. for thermal emission , $S_{\nu} = B_{\nu}$.

It is straightforward to show that the solution to Eq. 38 is

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} d\tau_{\nu}' e^{-(\tau_{\nu} - \tau_{\nu}')} S_{\nu}(\tau_{\nu}').$$
(39)

For the uniform slab, with constant S_ν,

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}}).$$
(40)

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation The uniform slab Random walks Rosseland approximation

Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

Emission Absorption Scattering Dicrete medium

3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab

Random walks

Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

The uniform slab

Random walks

4.2- Random walks

- If a medium is optically thick in scattering we expect a photon to undergo a random walk before its absortion or its escape from the medium. The net displacement is $\vec{R} = \sum_i \vec{s}_i$, and the dispersion in displacement is $\sigma(\vec{R}) \equiv (\langle \|\vec{R}\|^2 \rangle)^{1/2} = \sqrt{N}(\langle \|\vec{s}\|^2 \rangle)^{1/2}$. With $\langle \|\vec{s}\|^2 \rangle)^{1/2} \sim I$, the photon mean free path, we have $\sigma(R) \sim \sqrt{NI}$.
- The probability of absorption in each step is

$$a = \frac{\alpha_{\nu}^{\text{abs}}}{\alpha_{\nu}^{\text{abs}} + \alpha_{\nu}^{\text{sca}}}.$$

Since all steps are statistically independent, the probability of absorption for *N* steps is simply $N\epsilon_{\nu}$, and the average number of steps before absorption is $1/\epsilon_{\nu}$.

 Therefore, for an infinite medium, σ(R) = I/√εν, which is sometimes called the 'thermalization length': if the medium is larger than σ(R), then it is said to be effectively thick as most photons will be absorbed within the medium.

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

(41)

Opacity and optical depth Source Function

Solutions of the transfer equation

The uniform slab

Random walks

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

- Emission Absorption Scattering Dicrete medium
- 3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

The uniform slab

Random walks

Rosseland approximation

Eddington approximation Two-stream approximation

- Next to the idealization of full thermodynamical equilibrium, we can explore the consequences of a 'local' thermodynamical equilibrium, such that the deviations of I_{ν} from $B_{\nu}(T)$ are small.
- The transfer equation for isotropic scattering can be written as

$$\frac{dI_{\nu}}{ds} = -\overbrace{(\alpha_{\nu}^{\rm abs} + \alpha_{\nu}^{\rm scat})}^{\alpha_{\nu}} (I_{\nu} - S_{\nu}), \qquad (42)$$

and in steady state, $\frac{dI_{\nu}}{ds} = \frac{\partial I_{\nu}}{\partial s} = \hat{s} \cdot \vec{\nabla} I_{\nu}$.

• For thermal radiative processes, $S_{\nu} = B_{\nu}$, so

$$I_{\nu} = B_{\nu} - \underbrace{\frac{1}{\alpha_{\nu}} \frac{\partial I_{\nu}}{\partial s}}_{O_{\nu}} \quad . \tag{43}$$

1st order correction

• Since the first order correction is expected to be small, we approximate $\frac{\partial I_{\nu}}{\partial s} \approx \frac{\partial B_{\nu}}{\partial s}$, and

$$I_{\nu} \approx B_{\nu} - \frac{1}{\alpha_{\nu}} \frac{\partial B_{\nu}}{\partial s}.$$
 (44)

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

The uniform slab Random walks

$$\vec{F}_{\nu}\cdot\hat{z}\equiv F_{\nu}=\oint\hat{k}\cdot\hat{z}I_{\nu}(\Omega)d\Omega=\oint\cos(\theta)I_{\nu}(\Omega)d\Omega.$$
 (45)

For an application we need to rewrite Eq. 44 in terms of
 [∂]/_{∂z}:

$$\frac{\partial B_{\nu}}{\partial s} = \hat{s} \cdot \vec{\nabla} B_{\nu} = \mu \frac{\partial B_{\nu}}{\partial z}, \qquad (46)$$

in plane-parallel geometry.

Direct integration of Eq. 44 then yields

$$\mathcal{F}_{
u}=-rac{4\pi}{3lpha_{
u}}rac{\partial B_{
u}}{\partial z}.$$

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation

The uniform slab

Random walks

(47)

 The need for a plane-parallel approximation (required in Eq. 46) can be avoided. We start by defining the angular moments of *l_ν*:

$$\left\{ \begin{array}{c} c u_{\nu} \\ \vec{F}_{\nu} \\ c \mathbf{P}_{\nu} \end{array} \right\} \equiv \oint \left\{ \begin{array}{c} 1 \\ \hat{k} \\ \hat{k} \hat{k} \end{array} \right\} I_{\nu}(\hat{k}) d\Omega.$$
 (48)

Next we rewrite the RT equation as

$$\hat{k} \cdot \vec{\nabla} I_{\nu} = j_{\nu}^{\text{abs}} - \alpha_{\nu} I_{\nu} + \alpha_{\nu}^{\text{sca}} \oint \Phi(\hat{k}, \hat{k}') I_{\nu}(\hat{k}') d\Omega'.$$
(49)

• We then evaluate $\oint d\Omega \hat{k}$ (Eq. 49):

$$\vec{\nabla} \cdot \oint \hat{k}\hat{k}I_{\nu}d\Omega = \underbrace{\oint d\Omega\hat{k}j_{\nu}^{abs}}_{=0} -\alpha_{\nu}\vec{F}_{\nu} + \underbrace{\alpha_{\nu}^{sca} \oint d\Omega' I_{\nu}(\hat{k}')}_{=0, \text{ if } \Phi(-\hat{k},\hat{k}')=\Phi(\hat{k},\hat{k}')} .$$
(50)

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation

The uniform slab

Random walks

- In Eq. 50 we used forward-backward scattering symmetry, i.e. that Φ(-k̂, k̂') = Φ(k̂, k̂'), which is true for atomic processes (but not for large dust grains).
- We thus have

$$\boldsymbol{c}\vec{\nabla}\cdot\mathbf{P}=-\alpha_{\nu}\vec{F}_{\nu}.$$
(51)

• We now apply local thermodynamical equilibrium, so that $I_{\nu}(\vec{x}) \approx B_{\nu}(T(\vec{x}))$:

$${f P}_{ij}pprox \oint d\Omega k_i k_j {B_
u \over c} = {4\pi \over 3c} B_
u(T) \delta_{ij}.$$

Replacing into Eq. 51,

$$F_{\nu} = \vec{F}_{\nu} \Big|_{z} \approx -\frac{4\pi}{3\alpha_{\nu}} \frac{\partial B_{\nu}(T)}{\partial z}.$$
 (53)

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

(52)

Solutions of the transfer equation The uniform slab Random walks

• We integrate over frequency for the total radiative flux:

$$F(z) = \int_0^\infty d\nu F_\nu(z) = -\frac{4\pi}{3} \frac{\partial T}{\partial z} \int_0^\infty d\nu \frac{1}{\alpha_\nu} \frac{\partial B_\nu}{\partial T}.$$
 (54)

We introduce the Rosseland mean absorption coefficient,

$$\frac{1}{\alpha_R} = \frac{\int_0^\infty d\nu \frac{1}{\alpha_\nu} \frac{\partial B_\nu}{\partial T}}{\int_0^\infty d\nu \frac{\partial B_\nu}{\partial T}},$$

and note that $\int_0^\infty d\nu \frac{\partial B_\nu}{\partial T} = \frac{4}{\pi} \sigma T^3$.

• Finally, the flux in LTE is:

$$ec{F}\cdot\hat{s}=-rac{16\sigma T^3}{3lpha_R}rac{\partial T}{\partial s}.$$

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

(55)

(56)

Opacity and optical depth Source Function

Solutions of the transfer equation

The uniform slab

Random walks

We can also write Eq. 56 as

$$\vec{\mathbf{z}} \cdot \hat{\mathbf{s}} = -\frac{4\sigma}{3\alpha_R} \frac{\partial T^4}{\partial s},$$

or

$$ec{F}\cdot\hat{f s}=-rac{4c}{3lpha_R}rac{\partial u}{\partial s}.,$$

where *u* is the total radiative energy density.

 It is interesting to note the similitude between Rosseland's approximation and Fick's law for diffusion:

flux
$$\sim -D\vec{\nabla}$$
 quantity being diffused, (59)

in this case $D = \frac{1}{3}cI$ with $I \equiv 1/\alpha_R$ would be an effective mean free path.

Specific Intensity Definition of specific intensity Moments of specific intensity

Transfer equation

(57)

(58)

Emission Absorption Scattering Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation The uniform slab

Random walks

 A problem with Rosseland's approximation is that the diffusion coefficient *D* diverges as *ρ* → 0. In order to extend is domain of validity, the 'lambda-controled' diffusion has been proposed:

$$ec{F}\cdot\hat{s}=-\Lambdarac{4c}{3lpha_{R}}rac{\partial u}{\partial s}.,$$

For instance

$$\Lambda = \frac{2+R}{6+3R+R^2},$$

with

$$\mathbf{R} = \frac{1}{\alpha_R} \frac{\|\vec{\nabla}u\|}{u},\tag{62}$$

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

(60)

(61)

Opacity and optical depth

Source Function

Solutions of the transfer equation

Random walks

Rosseland approximation Eddington approximation Two-stream approximation

see Casassus et al. (2019, MNRAS, 486L, 58; and references therein) for an application.

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

- Emission Absorption Scattering Dicrete medium
- 3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

The uniform slab

Random walks

Rosseland approximation

Eddington approximation

Two-stream approximation

4.4- Eddington approximation

 In plane-parallel geometry the radiation moments introduced in Sec. 2 and in Eq. 48 can be summarised as

$$\left\{ \begin{array}{c} J_{\nu} \\ H_{\nu} \\ K_{\nu} \end{array} \right\} \equiv \oint_{-1}^{1} \frac{1}{2} \left\{ \begin{array}{c} 1 \\ \mu \\ \mu^{2} \end{array} \right\} I_{\nu}(\mu) d\mu.$$
 (63)

- By comparison with Eq. 48, we have $J_{\nu} = c \frac{u_{\nu}}{4\pi}$, $H_{\nu} = \frac{F_{\nu|z}}{4\pi}$, $K_{\nu} = c \frac{\mathbf{P}_{\nu|zz}}{4\pi}$.
- In the treatment that leads to the Eddington approximation, we assume that *I_ν(μ)* is nearly isotropic and we expand to first order in *μ*:

$$I_{\nu} = a_{\nu} + b_{\nu}\mu, \qquad (64)$$

Specific Intensity Definition of specific intensity Moments of specific

Transfer equation

Emission Absorption Scattering Dicrete medium

intensity

Opacity and optical depth Source Function

Solutions of the transfer equation The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

i.e. similar to a dipole term $b\mu$ modifying the monopole term a.

4.4- Eddington approximation

- Direct evaluation of Eq. 63 using Eq. 64 leads to $J_{\nu} = a_{\nu}$, $H_{\nu} = \frac{b_{\nu}}{3}$ and $K_{\nu} = \frac{a_{\nu}}{3}$.
- We therefore have

$$K_{\nu} = \frac{1}{3}J_{\nu}, \qquad (65)$$

exactly as for thermal radiation, for which the radiation pressure is $p_{\nu} = \frac{1}{3}u_{\nu}$, but here in a more general case. Eq. 65 is known as the Eddington approximation.

• The plane-parallel RT equation following from Eq. 42 and Eq. 46 is

$$\mu \frac{\partial I_{\nu}}{\partial z} = -\alpha_{\nu} (I_{\nu} + S_{\nu}),, \qquad (66)$$

or

$$\mu \frac{\partial I_{\nu}}{\partial \tau_{\nu}} = -(I_{\nu} + S_{\nu}),.$$
(67)

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth Source Function

```
Solutions of the
transfer equation
The uniform slab
Random walks
Rosseland approximation
Eddington approximation
Two-stream approximation
```

4.4- Eddington approximation

• We now take $\int d\mu$ (Eq. 67),

$$rac{\partial H_{
u}}{\partial au_{
u}} = J_{
u} - S_{
u},$$

and $\int d\mu \mu$ (Eq. 67),

$$\frac{\partial K_{\nu}}{\partial \tau_{\nu}} = H_{\nu}.$$
(69)

Using the Eddington approximation (Eq. 65), we obtain an equation for *J_ν* as a function of *S_ν*:

$$\frac{1}{3}\frac{\partial^2 J_{\nu}}{\partial \tau_{\nu}^2} = J_{\nu} - S_{\nu},\tag{70}$$

• In terms of the albedo $\omega_{\nu} = 1 - \epsilon_{\nu}$ (see Eq. 41),

$$\frac{1}{3}\frac{\partial^2 J_{\nu}}{\partial \tau_{\nu}^2} = \epsilon(\nu)(J_{\nu} - B_{\nu}), \qquad (71)$$

which, if the medium properties are known, is a 2nd-order equation for $J_{\nu}(\tau_{\nu})$. If it is possible to solve Eq. 71 for $J_{\nu}(\tau_{\nu})$, then we have I_{ν} by integration of Eq. 67.

Specific Intensity

(68)

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

2 Transfer equation

- Emission Absorption Scattering Dicrete medium
- 3 Opacity and optical depth Source Function

4 Solutions of the transfer equation

The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation

The uniform slab Random walks

Rosseland approximation

Eddington approximation

Two-stream approximation

4.5- Two-stream approximation

- We have seen that the Eddington approximation leads to a 2nd-order equation for J_{ν} (Eq. 71) which approximately solves the RT problem in plane-parallel geometry. However boundary conditions are required to solve Eq. 71. The two-stream approximations provides a set of such boundary conditions.
- In the two stream approximation, we assume that the whole specific intensity field is restricted to only two directions with $\mu = \pm \frac{1}{\sqrt{3}}$:

$$I_{\nu}(\mu) = I_{\nu}^{+}\delta\left(\mu - \frac{1}{\sqrt{3}}\right) + I_{\nu}^{-}\delta\left(\mu + \frac{1}{\sqrt{3}}\right).$$
(72)

Direct evaluation yields

$$\left\{\begin{array}{c}J_{\nu}\\H_{\nu}\\K_{\nu}\end{array}\right\} = \left\{\begin{array}{c}\frac{1}{2}(I^{+}+I^{-})\\\frac{1}{2\sqrt{3}}(I^{+}-I^{-})\\\frac{1}{6}(I^{+}+I^{-})\end{array}\right\}.$$
(73)

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth

Source Function

Solutions of the transfer equation The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

4.5- Two-stream approximation

- We see that in the two-stream approximation, $K_{\nu} = \frac{1}{3}J_{\nu}$, which is the Eddington approximation. The transfer equation Eq. 67 also applies to the two streams, so taking moments and applying the Eddington approximation also yields Eq. 71. Thus, the two streams also satisfy Eq. 71.
- Using the Eddington approx. in Eq. 69,

$$rac{\partial K_{
u}}{\partial au_{
u}} = H_{
u} = rac{1}{3} rac{\partial J_{
u}}{\partial au_{
u}}$$

the moments in Eq. 73 can be rewritten as

$$I^{+} = J_{\nu} + \frac{1}{\sqrt{3}} \frac{\partial J_{\nu}}{\partial \tau_{\nu}}, \qquad (75)$$
$$I^{-} = J_{\nu} - \frac{1}{\sqrt{3}} \frac{\partial J_{\nu}}{\partial \tau_{\nu}}. \qquad (76)$$

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

(74)

(77)

Opacity and optical depth Source Function Solutions of the

Solutions of the transfer equation The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

4.5- Two-stream approximation

• To finally write the required boundary conditions, we focus on a slab geometry from $\tau_{\nu} = 0$ to $\tau_{\nu} = \tau_{\circ}$. Clearly, no radiation will come from $\tau_{\nu} = +\infty$, so $I^{-}(\tau_{\circ}) = 0$. Likewise, $I^{+}(0) = 0$. Therefore, the required boundaries are:

$$\frac{1}{\sqrt{3}}\frac{\partial J_{\nu}}{\partial \tau_{\nu}} = J_{\nu}, \text{ at } \tau_{\nu} = \tau_{\circ}$$
(78)

$$\frac{1}{\sqrt{3}}\frac{\partial J_{\nu}}{\partial \tau_{\nu}} = -J_{\nu} \text{ at } \tau_{\nu} = 0.$$

Specific Intensity

Definition of specific intensity Moments of specific intensity

Transfer equation

Emission Absorption Scattering Dicrete medium

Opacity and optical depth Source Function

Solutions of the transfer equation The uniform slab Random walks Rosseland approximation Eddington approximation Two-stream approximation

(79)