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1.1-Definition of specific intensity

• In geometrical optics we approximate the transport of
radiative energy along straight lines, or ‘rays’, in direction
k̂ .

• If dE is the amount of radiative energy crossing an area
d~A = dAn̂ in the direction k̂ , within a solid angle dΩ, and
with a frequency range within [ν, ν + dν], then the
monochromatic specific intensity Iν(k̂ , ~x , t) is defined by

dE = Iν(k̂ , ~x , t) k̂ · n̂ dA dΩ dν dt . (1)
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1.1- Definition of specific intensity

• Geometrical optics can only be applied to cases where the
wavelength λ is much larger than the scale of structure in
the propagation medium, ‘a’. In other words, it cannot be
used to describe the interaction of optical light with atoms,
and neither can it be used to describe diffraction
phenomena which become evident when λ ∼ a.

• To see this we follow Rybicky & Lightman (Sec. 2.6).
Because of the uncertainty principle, for a ray with k̂ = ẑ,

dxdpxdydpy = p2dAdΩ & h2, (2)

and
dAdΩ & λ2. (3)

• We see that if dA ∼ λ2, then dΩ ∼ 1, and there is no
constraint on direction. Similar constraints apply to time,
with dνdt & 1.

• Thus the transfer theory described below is applicable
when λ� a.
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1.1- Definition of specific intensity

• In the absence of interaction with matter, I(k̂ , ~x) is constant
for any point ~x along the ray k̂ . Proof: see Shu Vol. I.
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1.2- Moments of specific intensity

• The mean intensity at ~x is simply

Jν(~x) =
1

4π

∫
dΩIν(k̂ , ~x). (4)

In spherical coordinates, with µ = cos(θ),

Jν =
1

4π

∫ 2π

Φ=0
dΦ

∫ 1

µ=−1
dµ Iν(µ,Φ) (5)

• The monochromatic radiative energy density is

uν =
4π
c

Jν . (6)

and the bolometric radiative energy density is

u =

∫
dνuν . (7)
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1.2- Moments of specific intensity

• The net flux in the direction n̂ and at point ~x is

Fν(n̂) =

∫
dΩIν(k̂ , ~x) cos(θ), (8)

where θ is the angle between k̂ and n̂. With µ = cos(θ),

Fν(n̂) =

∫ 2π

Φ=0
dΦ

∫ 1

µ=−1
dµµIν(µ,Φ). (9)

• Given that the photon momentum is ε/c, with ε = hν, the
radiation pressure in direction n̂ is

p(n̂) =
2
c

∫
dΩ cos2(θ)Iν(k̂ , ~x), (10)

or, in terms of µ = cos(θ),

p(n̂) =
2
c

∫ 2π

Φ=0
dΦ

∫ 1

µ=−1
dµµ2Iν(µ,Φ). (11)
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1.2- Moments of specific intensity

• Problem: consider a sphere with radius R which emits a
uniform specific intensity field from its surface, B. Proove
that the flux in direction r̂ a distance r away from the center
of the sphere is

F = πB
(

R
r

)2

. (12)

The flux at the surface of the sphere is thus F = πB.
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2-Transfer equation

• In the presence of matter the spec. int. field may change
with position (and time),

∂Iν
c∂t

+ k̂ · ~∇Iν = sources− sinks. (13)

• The sources correspond to the emission of radiative
energy by matter, and to reflection in the direction k̂ .

• The sinks correspond to absorption of radiative energy by
matter, or by reflection out of the direction ĵ .

• Reflected light is also called ‘scattered’ light.
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2.1-Emission
• In the presence of mater the specific intensity field may

change with position. A volume element dV = ds dA emits
an energy

dE = jνdνdVdtdΩ, (14)

towards the direction of dΩ, where jν(k̂) is the emission
coefficient.

• From the definition of specific intensity,

dE = dIν(k̂ ′,~s, t) k̂ ′ · n̂′dA′ dΩ′ dν dt , (15)

for any surface d~A′ centered on ~s. If we choose d~A = d~A′,
k̂ = ŝ and dΩ = dΩ′ then k̂ · n̂ = 1. In the absence of
absorption Iν is constant along ŝ, so the increase in Iν due
to the contribution from dV at ~s is

dIν = jνds. (16)
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2.2- Absorption

• For pure absorption, without scattering or emission, and if
the absorption is caused by infinitely small particles that
do not shadow each other inside a volume dV = dsdA, we
expect

dIν = −αν Iνds, (17)

• The absorption coefficient αν can be connected to the
effective cross-sectional area σν of the absorbers. The
total energy absorbed in volume dV is

dE = −IνnσνdVdΩdtds, (18)

where the minus sign accounts for dE being removed from
the radiation field.

• The difference in specific intensity is given by

dE = dIν(k̂ , ~x , t) dA dΩ dν dt , (19)

so
αν = n σν . (20)
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2.3- Scattering

• Reflection of photons, rather than absorption, will also
decrease the specific intensity along a ray k̂ . In analogy
with pure absorption, the corresponding decrease in
specific intensity will be

dIν = −αsca
ν Iν ds, (21)

with ŝ = k̂ .
• Photons coming from all directions may also be reflected

into the ray k̂ . To describe the probability of reflection from
direction k̂ ′ into direction k̂ we use the phase function
Φν(k̂ , k̂ ′) (also called the ‘scattering probability density’),

dIν = αsca
ν

∮
Φν(k̂ , k̂ ′)Iν(k̂ ′)dΩ′ ds. (22)

The phase function is normalized and symmetric:∮
Φν(k̂ , k̂ ′)dΩ′ = 1 =

∮
Φν(k̂ ′, k̂)dΩ. (23)
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2.3- Scattering

• The full transfer equation in a continuous medium is thus:

dIν
ds

= jabs
ν −αabs

ν Iν−αsca
ν Iν +αsca

ν

∮
Φν(k̂ , k̂ ′)Iν(k̂ ′)dΩ′︸ ︷︷ ︸

j scat
ν

, (24)

with k̂ = d̂s, and where we have added the superscript
’abs’ to the emission coefficient in the absence of
scattering.
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2.3- Scattering

• In thermodynamical equilibrium, Iν(k̂ , ~x) = Bν(T ) and
since the temperature field must be uniform, dIν

ds = 0. Since
the phase function is normalized, we have Kirchoff’s law:

jabs
ν = αabs

ν Bν . (25)

• Note that in Eq. 24, the term highlighted as j scat
ν effectively

enters as an emission coefficient, i.e. it is not proportional
to Iν .

• Grouping together terms, Eq. 24 can also be written

dIν
ds

= jν − αν Iν , (26)

with jν = jabs
ν + j sca

ν and αν = αabs
ν + αsca

ν .
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2.4- Dicrete medium

• In a discrete medium the coupling of radiation and matter
occurs through radiative transitions, each of which bears a
line-profile φ(ν) which is narrowly centred on the transition
frequency ν◦.
• The rates of radiative transitions can be described using

the Einstein coefficients:
• Aji : probably of spontaneous radiative decay per unit time

per absorber (units for A are s−1).
• Bij J̄: probably of absorption per unit time per absorber, with

J̄ =
∫

dνφ(ν)Jν is the frequency-averaged mean specific
intensity (so that MKS units of B are s−1/(Jy sr−1)).

• Bji J̄: probably of stimulated emission per unit time.
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2.4- Dicrete medium

• The line profiles φ(ν) are described with Lorentzians, and
their width (or the line-widths), ∆ν, are directly connected
to the spontaneous decay rate via the time-energy
uncertainty principle, ∆E∆t ≥ ~/2:

∆t ∼ 1
Aji
∼ 1

∆ν
. (27)

• Detailed balance connects the Einstein coefficients:

giBij = gjBji , (28)

and

Aji =
2hν3

ji

c2 Bji . (29)
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2.4- Dicrete medium

• In a discrete and isotropic medium, the RT equation in its
compact form (Eq. 26) is also valid, and the emission and
absorption coefficients are directly connected to the
Einstein coefficients. In this case the phase function is
constant, Φν(k̂ , k̂ ′) = 1/(4π).

• The emission coefficient is

jν =
hν◦
4π

njAjiφ(ν). (30)

This coefficient includes what would be called ‘scattering’
for the lines: a de-excitation following the absorption of the
same photon.

• The absorption coefficient is

αν =
hν◦
4π

(niBij − njBji )φ(ν). (31)

Note that stimulated emission acts as negative absorption.
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3- Opacity and optical depth

• It is customary to use the opacities κ rather than the
absorption coefficients α, with α = κρ, where ρ is the
mass density.

• We also define the optical depths along a ray,

τ abs
ν =

∫
ds αabs =

∫
dsρκabs, (32)

and
τ sca
ν =

∫
ds αsca =

∫
dsρκsca. (33)
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3- Opacity and optical depth

• The exponential decay in the pure absorption case
suggests that exp(−τ abs

ν ) is the probability that a photon
survives the optical depth τ abs

ν without absorption. This
allows us to estimate the mean optical depth travelled by
all photons:

〈τν〉 =

∫ ∞
0

τν exp(−τν)dτν = 1. (34)

• The photon mean free path lν is the corresponding
distance, i.e.

labs
ν =

1
αabs
ν

=
1

nσabs
ν

, (35)

and similarly for scattering.
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3.1- Source Function

• Changing variables to dτν = (αabs
ν + αsca

ν )ds, the full
transfer equation can be written as

dIν
dτν

=
jabs
ν + j sca

ν

αabs
ν + αsca

ν︸ ︷︷ ︸
Sν

−Iν , (36)

where we have defined the Source Function Sν .
• In the absence of scattering, i.e. if αsca

ν = 0, then Sν = Bν .
• For an isotropic phase function, i.e. if Φν(k̂ , k̂ ′) = 1/(4π),

the source function is

Sν =
jabs
ν + αsca

ν Jν
αabs
ν + αsca

ν

(37)
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4.1- The uniform slab

• In the widely used, but seldom exact, case of no
scattering, the equation of radiative transfer Eq. 36 is

dIν
dτν

= −Iν + Sν , (38)

where Sν = jabs
ν /αabs

ν . for thermal emission , Sν = Bν .
• It is straightforward to show that the solution to Eq. 38 is

Iν(τν) = Iν(0)e−τν +

∫ τν

0
dτ ′νe−(τν−τ ′

ν)Sν(τ ′ν). (39)

• For the uniform slab, with constant Sν ,

Iν(τν) = Iν(0)e−τν + Sν(1− e−τν ). (40)
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4.2- Random walks

• If a medium is optically thick in scattering we expect a
photon to undergo a random walk before its absortion or
its escape from the medium. The net displacement is
~R =

∑
i ~si , and the dispersion in displacement is

σ(~R) ≡ (〈‖~R‖2〉)1/2 =
√

N(〈‖~s‖2〉)1/2.With 〈‖~s‖2〉)1/2 ∼ l ,
the photon mean free path, we have σ(R) ∼

√
Nl .

• The probability of absorption in each step is

ε =
αabs
ν

αabs
ν + αsca

ν

. (41)

Since all steps are statistically independent, the probability
of absorption for N steps is simply Nεν , and the average
number of steps before absorption is 1/εν .
• Therefore, for an infinite medium, σ(R) = l/

√
εν , which is

sometimes called the ‘thermalization length’: if the
medium is larger than σ(R), then it is said to be effectively
thick as most photons will be absorbed within the medium.
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4.3- Rosseland approximation
• Next to the idealization of full thermodynamical

equilibrium, we can explore the consequences of a ‘local’
thermodynamical equilibrium, such that the deviations of
Iν from Bν(T ) are small.

• The transfer equation for isotropic scattering can be
written as

dIν
ds

= −

αν︷ ︸︸ ︷
(αabs
ν + αscat

ν )(Iν + Sν), (42)

and in steady state, dIν
ds = ∂Iν

∂s = ŝ · ~∇Iν .
• For thermal radiative processes, Sν = Bν , so

Iν = Bν −
1
αν

∂Iν
∂s︸ ︷︷ ︸

1st order correction

. (43)

• Since the first order correction is expected to be small, we
approximate ∂Iν

∂s ≈
∂Bν

∂s , and

Iν ≈ Bν −
1
αν

∂Bν
∂s

. (44)
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4.3- Rosseland approximation

• For the flux ~Fν =
∮

Iν k̂dΩ we integrate over solid angle.
Concretely,

~Fν · ẑ ≡ Fν =

∮
k̂ · ẑIν(Ω)dΩ =

∮
cos(θ)Iν(Ω)dΩ. (45)

• For an application we need to rewrite Eq. 44 in terms of ∂
∂z :

∂Bν
∂s

= ŝ · ~∇Bν = µ
∂Bν
∂z

, (46)

in plane-parallel geometry.
• Direct integration of Eq. 44 then yields

Fν = − 4π
3αν

∂Bν
∂z

. (47)
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4.3- Rosseland approximation
• The need for a plane-parallel approximation (required in

Eq. 46) can be avoided. We start by defining the angular
moments of Iν :

cuν
~Fν

cPν

 ≡
∮ 

1
k̂

k̂ k̂

 Iν(k̂)dΩ. (48)

• Next we rewrite the RT equation as

k̂ · ~∇Iν = jabs
ν − αν Iν + αsca

ν

∮
Φ(k̂ , k̂ ′)Iν(k̂ ′)dΩ′. (49)

• We then evaluate
∮

dΩk̂(Eq. 49):

~∇ ·
∮

k̂ k̂IνdΩ =

∮
dΩk̂jabs

ν︸ ︷︷ ︸
=0

−αν~Fν+

αsca
ν

∮
dΩ′Iν(k̂ ′)

∮
dΩk̂Φ(k̂ , k̂ ′)︸ ︷︷ ︸

=0, if Φ(−k̂,k̂ ′)=Φ(k̂,k̂ ′)

. (50)
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4.3- Rosseland approximation

• In Eq. 50 we used forward-backward scattering
symmmetry, i.e. that Φ(−k̂ , k̂ ′) = Φ(k̂ , k̂ ′), which is true for
atomic processes (but not for large dust grains).

• We thus have
c~∇ · P = −αν~Fν . (51)

• We now apply local thermodynamical equilibrium, so that
Iν(~x) ≈ Bν(T (~x)):

Pij ≈
∮

dΩkikj
Bν
c

=
4π
3c

Bν(T )δij . (52)

• Replacing into Eq. 51,

Fν = ~Fν
∣∣∣
z
≈ − 4π

3αν
∂Bν(T )

∂z
. (53)
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4.3- Rosseland approximation

• We integrate over frequency for the total radiative flux:

F (z) =

∫ ∞
0

dνFν(z) = −4π
3
∂T
∂z

∫ ∞
0

dν
1
αν

∂Bν
∂T

. (54)

• We introduce the Rosseland mean absorption coefficient,

1
αR

=

∫∞
0 dν 1

αν

∂Bν

∂T∫∞
0 dν ∂Bν

∂T

, (55)

and note that
∫∞

0 dν ∂Bν

∂T = 4
πσT 3.

• Finally, the flux in LTE is:

~F · ŝ = −16σT 3

3αR

∂T
∂s

. (56)
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4.3- Rosseland approximation

• We can also write Eq. 56 as

~F · ŝ = − 4σ
3αR

∂T 4

∂s
, (57)

or
~F · ŝ = − 4c

3αR

∂u
∂s
., (58)

where u is the total radiative energy density.
• It is interesting to note the similitude between Rosseland’s

approximation and Fick’s law for diffusion:

flux ∼ −D~∇ quantity being diffused, (59)

in this case D = 1
3 cl with l ≡ 1/αR would be an effective

mean free path.
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4.3- Rosseland approximation

• A problem with Rosseland’s approximation is that the
diffusion coefficient D diverges as ρ→ 0. In order to
extend is domain of validity, the ‘lambda-controled’
diffusion has been proposed:

~F · ŝ = −Λ
4c

3αR

∂u
∂s
., (60)

For instance
Λ =

2 + R
6 + 3R + R2 , (61)

with

R =
1
αR

‖~∇u‖
u

, (62)

see Casassus et al. (2019, MNRAS, 486L, 58; and
references therein) for an application.
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4.4- Eddington approximation

• In plane-parallel geometry the radiation moments
introduced in Sec. 2 and in Eq. 48 can be summarised as Jν

Hν
Kν

 ≡
∮ 1

−1

1
2


1
µ
µ2

 Iν(µ)dµ. (63)

• By comparison with Eq. 48, we have Jν = c uν

4π , Hν =
~Fν |z
4π ,

Kν = c Pν |zz
4π .

• In the treatment that leads to the Eddington
approximation, we assume that Iν(µ) is nearly isotropic
and we expand to first order in µ:

Iν = aν + bνµ, (64)

i.e. similar to a dipole term bµ modifying the monopole
term a.
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4.4- Eddington approximation

• Direct evaluation of Eq. 63 using Eq. 64 leads to Jν = aν ,
Hν = bν

3 and Kν = aν

3 .
• We therefore have

Kν =
1
3

Jν , (65)

exactly as for thermal radiation, for which the radiation
pressure is pν = 1

3 uν , but here in a more general case.
Eq. 65 is known as the Eddington approximation.
• The plane-parallel RT equation following from Eq. 42 and

Eq. 46 is

µ
∂Iν
∂z

= −αν(Iν + Sν), , (66)

or
µ
∂Iν
∂τν

= −(Iν + Sν), . (67)
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4.4- Eddington approximation
• We now take

∫
dµ(Eq. 67),

∂Hν
∂τν

= Jν − Sν , (68)

and
∫

dµµ(Eq. 67),
∂Kν
∂τν

= Hν . (69)

• Using the Eddington approximation (Eq. 65), we obtain an
equation for Jν as a function of Sν :

1
3
∂2Jν
∂τ2
ν

= Jν − Sν , (70)

• In terms of the albedo ων = 1− εν (see Eq. 41),

1
3
∂2Jν
∂τ2
ν

= ε(ν)(Jν − Bν), (71)

which, if the medium properties are known, is a 2nd-order
equation for Jν(τν). If it is possible to solve Eq. 71 for
Jν(τν), then we have Iν by integration of Eq. 67.
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4.5- Two-stream approximation

• We have seen that the Eddington approximation leads to a
2nd-order equation for Jν (Eq. 71) which approximately
solves the RT problem in plane-parallel geometry.
However boundary conditions are required to solve Eq. 71.
The two-stream approximations provides a set of such
boundary conditions.

• In the two stream approximation, we assume that the
whole specific intensity field is restricted to only two
directions with µ = ± 1√

3
:

Iν(µ) = I+
ν δ

(
µ− 1√

3

)
+ I−ν δ

(
µ+

1√
3

)
. (72)

• Direct evaluation yields Jν
Hν
Kν

 =


1
2 (I+ + I−)
1

2
√

3
(I+ − I−)

1
6 (I+ + I−)

 . (73)
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4.5- Two-stream approximation

• We see that in the two-stream approximation, Kν = 1
3 Jν ,

which is the Eddington approximation. The transfer
equation Eq. 67 also applies to the two streams, so taking
moments and applying the Eddington approximation also
yields Eq. 71. Thus, the two streams also satisfy Eq. 71.

• Using the Eddington approx. in Eq. 69,

∂Kν
∂τν

= Hν =
1
3
∂Jν
∂τν

, (74)

the moments in Eq. 73 can be rewritten as

I+ = Jν +
1√
3
∂Jν
∂τν

, (75)

I− = Jν −
1√
3
∂Jν
∂τν

. (76)

(77)
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4.5- Two-stream approximation

• To finally write the required boundary conditions, we focus
on a slab geometry from τν = 0 to τν = τ◦. Clearly, no
radiation will come from τν = +∞, so I−(τ◦) = 0. Likewise,
I+(0) = 0. Therefore, the required boundaries are:

1√
3
∂Jν
∂τν

= Jν , at τν = τ◦ (78)

1√
3
∂Jν
∂τν

= −Jν at τν = 0. (79)
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