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1.1-General formulation
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1.1- General formulation

e | et us first consider a single obstacle (or particle), whose maximum
dimmensionis d < A.

® The incident wave can be described with

Ei = &,E, k¥ (1)
Ij’,' = &FIOXE,'. (2)
€o

¢ Note that we describe the incident polarization in terms of &..

* When interacting with the target, the fields induce electric and magnetic dipoles
as in the case of static fields in the ‘static zone’ (save for the time dependence
exp(—iwt)).

* The induced dipoles can, in turn, generate electric and magnetic dipole
radiation, resulting in the fields Es y Hs.
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1.2- Scattering matrix
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1.2- Scattering matrix
¢ |n the region outside the target, labelled 2, the fields are given by

EZ - Ef + ES» (3)
Ho = H; + Hs. (4)

® |t is convenient to project the fields on the scattering plane. For the incident
plane wave,
E,- = (EO” éfl\ + Eoléu_)ei(kz_w’)
=E &+ EL&., (5)
where é"H X éu = éz
¢ |n the wave zone we know that the field emitted by the induced dlpoles i.e. the
scattered field, will converge to a transverse wave, i.e. ||Es|| x =-, 80
Es = E||séHs + ELSéLSa (6)

with
€|s = €9, €1s= —6y, and e, X €s = ér. (7)
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1.2- Scattering matrix

e Because of the linearity of the Maxwell equations, the scattered fields will be

linear combinations of the incident fields.

e We can thus relate the scattered and incident fields in terms of the amplitude
scattering matrix, with coefficients {s;}# ;-

(

Eys
Eis

):

eikr
—ikr

(

S2
Sy

S3
51

)

Ey;
Ey

)

(8)
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1.2- Scattering matrix

® The time-averaged Poynting vector anywhere outside the target, i.e. in region

2, is
~ 1 ro o 2 2 =z
S2 = §§R |:E2 X H5:| = S/' + Ss + Sexu (9)
where
o 1 1= -
= SR[Ex A, (10)
. 1.2 =
Ss = §§R|:ESXH5:|7 (11)
o 1 1= = = =
g, = E;R{E,XH;JFEstﬂ. (12)

* The notation “,” anticipates that this term, which corresponds to the interaction
between the scattered and incident fields, will cause the extinction of the
incident specific intensity.
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1.2- Scattering matrix

Scattering
¢ The Stokes parameters for the scattered fields are similar to the case of plane Etinton
waves seen in Chap. B, Sec. 2.2. oyl seaterna
* For the scattered field we use & and &, rather than & and &;: Dsﬁ;ctj'”‘”
ls = (EysEjs+ EisEls) (13) e
Qs = (EjsEjs — EisEls), (14)
US <EHsEis + ELSE|T5>7 (15)
Vo = I(EsEls — EisEjs). (16)



1.2- Scattering matrix

¢ We can now relate the scattered Stokes parameters in terms of the incident
Stokes parameters, using the amplitude scattering matrix

Is
Qs
Us
Vs

® For example, (TAREA):

Sy
Si2
So1

Sa3

"~ K2r2 | S31 Ssz2 Ssz S

S11 Si2 Siz3 S l;
1 So1 Soo Spz Sy Qi
U

Ss1 Sso Saz Sus Vi

’
SUISHE+ 11821 + [1S51% + 11 Sall?),

]
S (ISt + 1S2]* = [ISsll* + 11 Sa]?),

]
S(=IS11Z + 1S + 11Ss]1* = 11Sal1®),

1
SR[S1S5 + S5Si].

Scattering
General formulation
Extinction

Rayleigh scattering
Single target
Scattering for N targets

Diffraction

Mie theory
Scattering by a sphere



Outline

@ Scattering

Extinction

Scattering
General formulation

Scattering matrix

Rayleigh scattering
Single target
Scattering for N targets

Diffraction

Mie theory
Scattering by a sphere



1.3- Extinction
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¢ Consider a sphere S centered on a target particle. The net flux of the incident
Poynting vector through S is null, so the flux of the total Poynting vector must
correspond to radiative energy produced or absorbed by the particle.
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1.3- Extinction

Scattering

e The total Poynting vector is S = S; + Ss + Sex (see Egs. 9, 10,11,12), and we Gora in
write its flux through S as

Rayleigh scattering

5 Single target

Wa — _ S . er d 87 ( 22) Scattering for N targets
S Diffraction
Wa = VVI - Ws + Wexta (23) Mie theory

Scattering by a sphere

where W, = — [S;- &:dS, Ws = + [ Ss- &dS and Wey = — [ Sexi - &:dS.
e By symmetry W;=0, so
Wext = Wa + W57 (24)

i.e. W. is the sum of the power absorbed by the particle and that of the
scattered radiation.



1.3- Extinction

Scattering
¢ We consider a linearly polarized plane wave with E; || X. In the wave zone, we o
can write the fields as ]

N e’k(r—z) o Rayleigh scattering

Es=—7—XE, and (25) s
k Diffraction
Hs — 7ér X Es, (26) Mielhe.ory

w /~L Scattering by a sphere

where X is the vector scattering amplitude,
X = (spcos(¢) + S3 sin(¢))8)s + (54 cos(¢) + s1sin(¢))e.Ls. (27)

Note that X is dimensionless, and also depends on 6 through the s;.



1.3- Extinction
e After some calculation (see BH83), in the wave zone (lim kr — oo, tarea),

47 oA
Wext = Iip%[(x-exﬂezo]- (28) Scattering ‘
¢ We introduce the extinction cross-section el
W ayleigh scatterin
Cour = = @) ewie "
and following Eq. 24, C.; = C, + Cs. pifacton
e Using Egs. 25 and Egs. 26, we get et st
X 2
Cs = / I kZH a (30)
4z
¢ We identify the differential scattering cross section,
dos,, . |IX|?
E(ea ¢) - k2 ) (31 )
and the scattering phase function
1 d
O(0,0) = A2 (32)

- Cs dQ°



1.3- Extinction

* Note that the total cross sections for an assembly of randomly distributed
particles is additive (see Sec. 2 below). If the particles are spheres, or else are
also randomly oriented, ¢ only depends on 6.

e Another useful quantity is the asymmetry parameter,
g = (cos(6)) = / cos(0) (0, 6)d0. (33)
4

e The cross sections are usually reported in terms of the extinction, scattering
and absorption efficiencies,

Cext
Z )

G
_S

Ca

Qext = = Ea

Q and Q, (34)

where X is the projected area of the target in the direction of incidence - i.e.
Y = & for a sphere with radius a.
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1.3- Extinction

® The above cross-sections in Egs. 29 and 30 were derived for x—polarized
incident light, i.e. Cex x and Cs x, but are easily extended to y—polarized light,
Cexi,y and Cs,y,.

e For natural light,

1 1
Cext = E(Cexl,x + Cexl,y) and Cs = E(CS,X + Cs,y)~ (35)
e [f the scattering volume, which encompases all targets, includes a continuum of
targets with number density n, then we may introduce the extinction coefficient

which attenuates the incident specific intensity /,,
Qext = nCexta (36)

and
dl, = —ael,ds. (37)
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Scattering
General formulation
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2.1- Single target
¢ |n the wave zone and in the Rayleigh regime (target < \), we know from
= (38)

Dipolar Radiation (Chapter C) that the fields in direction n are
. 1 elkr
Es = 2Z_|(AxpP)xh—hAx —
s 47e, r {( X p) x x c
HS — ,Uo ’\ E (39) Diffraction
€o Mie theory
¢ We extend the concept of to select a polarization state & in the scattered
wave, and after normahzmg by the incident flux, we obtain the differential
scattering cross section 9% = %5
9o (& P, &) = r2lEL
\94EI| o o i (40)
k & - p+(hxe) 2



2.1- Single target

® As an example let’s consider the case where the target is a small dielectric
sphere, with radius a, /. = pr = 1, and with € = e e, (w).

® |n the static zone, where d <« r <« )\, the fields are quasistatic, (tarea)

— €r — 1 32
= 4méo Ei, 41
p—sane. (55 ) #E (41)
and there is no magnetic dipole moment.
¢ The scattering cross section is then, for polarization &,
do

7:/(46
a2

e — 1
€r+2

2
’ 8- & (42)
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2.1- Single target
e For natural light, or non-polarized incident radiation, we take the average:

(Z)-we |y (e ar). o
" ceatering (n ). for aphareal coorcinatee win . | 3 (AREA). e
Diffraction
dov _ Lran | " cos(6) gy
o - el
® For Stokes | we get
Gorelr o

and a measure of the polarization fraction is N(#) = (%4 — ﬂ)// = 1j‘2§5(§’(9)
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2.2- Scattering for N targets

* For a system with N targets, we use the superposition principle,

~ N =
do,. ~ » D P Es j?
——(N, &N, &) =r——m—s—"—.
a2 & - Ei?
e In the radiation zone, |X — X'| ~r — A - X/,
2
do _ K ZN: e*-p+ (hxe m e'9%
dQ ~ (4re.E)? |4 P c ’

where q = kh, — kirand where the {x;} are the target positions.
e |f all targets are identical,

do_do
dQ  dQ

F(§), where F(§) = | &%
1 .
J

(47)

(48)

(49)
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2.2- Scattering for N targets

Scattering
General formulation
Scattering matrix

e If the positions X; are random (TAREA), Exinclon

Rayleigh scattering
2 Single target

<f(a)> = E eld)?/ ~ N’ (50) Diffraction
/‘ Mie theory
Scattering by a sphere

and

>
X
>

%NN k4 i é*_‘+( *)7 eiq~Xj (51)
aQ = (4re  E,)? — P c '

j=1



2.2- Scattering for N targets

¢ |f the targets are regularly ordered, for instance in a cubic network por
Ni x N> x N3 with spacing a (TAREA),

F(g) = N?

Sil"l2 (%N1 Q1 a) sin2 (%NQQQQ) sin2 (%quga)
N? sin? (%q1 a) N2 sin? (%Cha) N2 sin? (%qsa) ’

where g = 181 + Q28> + g3 8s.
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3- Diffraction

Scattering
General formulation
Scattering matrix

e The problem of diffraction is similar to scattering, except that we specify the Extncton
values of the fields at the edges or at the surfaces of the targets. Fayieh scatiering
e Consider a scalar field ¥(X, t) which satisfies the wave equation. For a Seaterna for et
harmonic component, with time dependence x exp(—iwt), o heory
(V2 + K?)y(X) = 0. (53)

e We want to solve the Helmholtz Equation (Eq. 53) for a wave
reflected/transmitted at a surface S;. We close space with another surface, So,
which we take out to co.



3- Diffraction

e We typically use v = 0 on Sy, except in possible openings.
¢ | et us consider the following Green function Gp:

Go(X, %) = G(X, X') + F(%, %),

where
(V2 4+ K2)G(X,X') = —56(X — X'),

and
(V2 + K2)F(%,X')=0.

e We adjust F so that Gp(X,X') =0if X € S1.
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3- Diffraction

H H . S ring
e The Green Theorem (after an extension to Eq.53), using the pair Gp and 1, o omon
yields (tarea): st

Rayleigh scattering
W(R) = 7{ (W) V' Go(%. %) ~ Go(%, ¥) - V'U(X)| dS'  (57)  Ehimmuue
S Difacion

Mie theory

and using the property that Gp(X,X') = 0if X' € S, i
W(F) = 7( [1/)()_(")?7' V' Gp(%, ;e’)} ds’. (58)

* Note the absence of the volume integral in the application of Green’s theorem
that results in Eq. 58, which reflects the absence of sources in the wave
equation.



3- Diffraction

* As an example we focus on the case where Sy is an infinite plane (at z = 0). /
* The Green function for the wave equation (Chapter C) is given by: Scattering
General formulation
. Scattering matrix
1 eIkH . Extinction
S oo . R
G(X’ X ) - E R ? Wlth R =X—X. (59) Rayleigh scattering
Single target
3 . Scattering for N targets
¢ We use the method of images to determine F: Difton
R’ Mie theory
1 el . = = = Scattering by a sphere
F == —EW, W|th Rl =X — X”7 (60)

where X" is symmetrical to X relative to z = 0.
¢ By design the Green function,

o 1 kR gikR’
GD(X7XI):<R—R,>7 (61)

cancels for X' € Sj.



3- Diffraction

* Injecting Gp (Eq.61) in the Green Theorem (Eq. 58) we get to (tarea): i

General formulation
Scattering matrix

. k _,, R ,kR / :;;T::: scattering
00 = 5 ) g o 1~ g * .

. Difacion
where we have used that when S; — oo, 1) ~ €¥/Ron S, and V/Gp ~ 1/R?,  wietneary
so that the integrand on S, decays faster than (1/R?).

e |f we consider that /(X’) = 0 on Sy except for an opening, in the limit z — oo,

k ikR ., ,
w8 =5 [ Zru®)as (69)
opening

where we recognize the “secondary sources” invoked in Huygens’ Principle.



3- Diffraction

® For the vectorial case of the electric field difracted by an opening in a plane
conductor at z = 0, a detailed calculation gives (see Jackson 10.6 and 10.7),

® |n the region z — oo, we expect that E will be a wave, and if E; is a plane wave,

x (A x E,)/
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4.1- Scattering by a sphere

Scattering

e Away from the Rayleigh regime, and if the target does not satisfy diffraction ————
boundary conditions (such as for a conductor), then in order to obtain the g el
differential scattering cross section we need to solve the Helmholtz equation for  Rayeign scatering
each harmonic component of the fields, subject to interface boundary et o et
conditions on the surface of the target (S): Diffraction

Mie theory
[E‘z(}) ~E ()?)} xh = 0 and (66)
|Fe(%) ~ Fh(X)] x A = 0, forany X e S (67)

* The problem is solved by expanding the incident and scattered electric field in a
complete set of functions, composed of Legendre polynomials for the 6 part,
and of spherical Bessel functions for the radial part.



4.1- Scattering by a sphere

® The solution is expressed in terms of the size parameter, n——
General formulation
27T a Scé((er.ing matrix
X=ka= —_—, (68) Extinction
)\ Rayleigh scattering

Single target
Scattering for N targets

and of m = kq /k, i.e. the real part of the refractive index inside the target. _

® The expansion of the scattered fields involves the following coefficients (Eg. A
4.53 Bohren & Humman 1998)

o MPIRmODGCO) — i (Olmin(mx)) 69
T mRi(mx) X ()] = b () [mxgia(mx)]
C pa(m)Xia(X)) — n(X)[mXin(mx)) 70

pjn(mx) xBSD (x)) — hSY () [mxin(mx)]”

where 4 is the magnetic permitivity of the target.



4.1- Scattering by a sphere

Scattering
General formulation
Scattering matrix

® The cross-sections are (Egs. 4.61 and 4.62 of Bohren & Huffman 1998): Raykigh scateing
C = 21 S (2n+ 1) (|a |2 + ‘b |2) and (71) Diffraction
e k2 1 " " Mie theory
n=
27
Cext = 75 > (20 + 1)R{an + by} (72)

n=1



4.1- Scattering by a sphere

® The angle-dependent amplitude scattering matrix is diagonal, s3 = s4 = 0, and

2n+1
ST = Z m(anﬂ'n + bnTn) and

2 1
So = Z L(anTn + bn’frn), Where

n(n+1)
_ P,‘7 B dP,17
™= Gn(@) 29 T gp

and where P} is the Legendre function associated to the corresponding
Legendre polynomial

d™Po(1)
PR(n) = (1= i)™ 2 ==

with p = cos(9).

(73)

(74)

(75)

(76)
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4.1- Scattering by a sphere

® The scattering phase function for spheres can be obtained from Egs. 27, 31

and 32:

®(0) = 270(0,¢) =27

s? + s3

Si1

k2 CSCR N

—4

ﬂ-kQCSCa .

(77)
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4.1- Scattering by a sphere

e Standard packages are available to compute the radiative transfer parameters

Scattering

using Mie theory. In what follows, we show the result of the bhmie. £ code, ————
available here: Coatetnomarts
https://en.wikipedia.org/wiki/Codes_for_electromagnetic_ Rayleigh scattering
scattering_by_spheres. et o et
We used the Python transcription and the wrappers from Kees Dullemond, Diffraction
available as part of the RADMC3D Monte-Carlo radiative transfer package: Mie theory
https:

//www.ita.uni-heidelberg.de/~dullemond/software/radmc—-3d/.

® The cross sections C are related to the opacities x by C = x * m, where mis
the mass of the target sphere.

¢ Here the phase function ¢ is normalized such that (6, ¢) = 1 corresponds to
isotropic scattering.

e The next 3 plots correspond to a = 10xm, and used the pyrmg70 optical
constants.


https://en.wikipedia.org/wiki/Codes_for_electromagnetic_scattering_by_spheres
https://en.wikipedia.org/wiki/Codes_for_electromagnetic_scattering_by_spheres
https://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
https://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/

4.1- Scattering by a sphere

Absorption and scattering opacity

103 J
Scattering
General formulation
Scattering matrix
102 . Extinction
Rayleigh scattering
Single target
Scattering for N targets
101 E Diffraction
a Mie theory
~
€
L 100 4
x
10—1 4
—— Absorption (no smear)
—— Absorption (yes smear)
102 { —— Scattering (no smear)
—— Scattering (yes smear)

1071 100 10! 102 103
A [um]



4.1- Scattering by a sphere

Absorption and scattering efficiencies

Scattering

100 4 General formulation
Scattering matrix
Extinction

Rayleigh scattering
Single target

-1
10 Scattering for N targets
Diffraction
f:‘; Mie theory
E 10724
O
1
(o
10—3 B

—— Absorption (no smear)
10™* §{ —— Absorption (yes smear)
—— Scattering (no smear)

—— Scattering (yes smear)

107! 10° 10! 102
X =2mna/A



4.1- Scattering by a sphere
Scattering phase function at A =1.0um for a = 10um

—— With smearing Scattering
103 4 —— No smearing General formulation
Scattering matrix
Extinction
Rayleigh scattering
Single target
102 4 Scattering for N targets
Diffraction
—_ Mie theory
1 1
5 10° 4
©
100 4
10—1 4

0 25 50 75 100 125 150 175
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4.1- Scattering by a sphere

e TAREA: reproduce the previous 3 plot for a 1 mm-sized sphere composed of
pure graphite, and add an extra plot for the grain albedo. Plot the phase
function at a wavelength of 1 mm.
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