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1.1- Quadrivectors

In this section we switch to CGS units, better adapted to describe the symmetry
between E⃗ and B⃗ (bibliography: Rybicki & Lightman).

• We define xµ = (ct , x , y , z) as the contravariant position quadrivector, whose
norm is s2 = ηµνxµxν (using the implicit sum notation).

• We also introduce xµ = (−ct , x , y , z) as the covariant position quadrivector.
• xµ = ηµνxν , with

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1)

• With ηµν ≡ ηµν , we have xµ = ηµνxν .
• Note that ηµσησν = δµν .
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1.1- Quadrivectors

• We change reference system from S to S ′, in uniform translation with velocity v
towards x̂ relative to S.

• A contravariant 4V transforms as

x ′µ = Λµ
νxν , where Λµ

ν =


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1

 , (2)

with β = v/c, and γ = 1/
√

1 − v2/c2.
• For a covariant 4V (tarea),

x ′
µ = Λ̃ ν

µ xν , with Λ̃ ν
µ = ηµτΛ

τ
ση

σν . (3)

• Λ̃ ν
µ is the inverse of Λµ

ν :

Λσ
ν Λ̃

µ
σ = δµν , and Λ̃α

µx ′µ = xα. (4)
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1.1- Quadrivectors

• The product of two 4Vs Aµ and Bµ is Lorentz invariant:

AµBµ = A′µB′
µ. (5)

• We also have the velocity 4V, Uµ ≡ dxµ

dτ , in which dτ is the relativistic interval.
(i.e. of proper time) between xµ and xµ + dxµ.

• In components (tarea), Uµ = γu(c, u⃗), with γu = 1/
√

1 − u2/c2.
• If we change to U ′ = Λµ

νUν ,

γu′ = γγu(1 − uv
c2 cos(θ)), with θ = ∠(u⃗, v⃗). (6)

• In the system that is bound to a particle with velocity u⃗, U ′ = c(1, 0⃗), for a 4V
Aµ,

A′ 0 = −1
c

UµAµ = −1
c

U ′µA′
µ.. (7)
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1.1- Quadrivectors

• We note that the phase of a plane wave must be Lorentz invariant because the
simultaneous cancellation of E⃗ and B⃗ in one system implies their cancellation
in any other system.

• Let’s introduce kµ = (ω/c, k⃗):

kµxµ = k⃗ · x⃗ − ωt = invariant ⇒ kµ is 4V. (8)

• We can use Eq. 7 to deduce the relativistic Doppler effect (tarea)

ck ′ 0 = ω′ = −Uµkµ = ωγ(1 − v
c
cos(θ)). (9)
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1.1- Quadrivectors

• The gradient operator is another example of 4V. If λ is a scalar invariant, then

λ,µ ≡ ∂λ

∂xµ
is a covariant 4V, and (10)

λ,µ ≡ ∂λ

∂xµ
is a contravariant 4V. (11)

• Proof: from xν = Λ̃ ν
µ x ′µ, we have that ∂xν

∂x′µ = Λ̃ ν
µ , and since λ′ = λ,

λ′
,µ =

∂xν

∂x ′µ
∂λ

∂xν
. (12)

• We extend the properties of 4Vs to tensors in general: a tensor of orden n
transforms as the product of n 4Vs.

• For example,
T ′µν = Λµ

σΛ
ν
τTστ ,

T ′µ
ν = Λµ

σΛ̃
τ
ν Tσ

τ .
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1.2- Covariance in electrodynamics

• Charge conservation, ∂ρ
∂t + ∇⃗ · J⃗ = 0, can be written as

Jµ
,µ = 0, using the four-current Jµ = (ρ c, J⃗). (13)

• In the Lorentz Gauge , and using CGS units,

∇2A⃗ − 1
c2

∂2A⃗
∂t2 = −4π

c
J⃗ = ∂α∂

αA⃗, (14)

∇2Φ− 1
c2

∂2Φ

∂t2 = −4πρ = ∂α∂
αΦ. (15)

• With Aµ = (Φ, A⃗),

Aβ,α
,α = −4π

c
Jβ , in which Aβ,α

,α =
∂2

∂xαxα
Aβ . (16)

• The Lorentz gauge ∇⃗ · A⃗ + 1
c
∂Φ
∂t = 0 can be written simply as Aα

,α = 0.
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1.2- Covariance in electrodynamics
• In order to write the Maxwell equations in their covariant form, we introduce the

field tensor
Fµν = Aν,µ − Aµ,ν . (17)

• With B⃗ = ∇⃗ × A⃗ and E⃗ = −∇⃗Φ− 1
c
∂A⃗
∂t (tarea): 2

Fµν =


0 −Ex −Ey −Ez

Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 (18)

• The Maxwell equations ∇⃗ · E⃗ = 4πρ and ∇⃗ × B⃗ − 1
c
∂E⃗
∂t = 4π

c J⃗ can be written
(tarea)

F ,ν
µν =

4π
c

Jµ. (19)

• The ‘internal’ equations ∇⃗ · B⃗ = 0 and ∇⃗ × E⃗ + 1
c
∂B⃗
∂t = 0 are written (tarea)

Fµν,σ + Fσµ,ν + Fνσ,µ = 0. (20)
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1.2- Covariance in electrodynamics

• We use the covariance of Fµν to infer the transformation laws for the fields E⃗ y
B⃗:

F ′
µν = Λ̃ α

µ Λ̃ β
ν Fαβ . (21)

• In terms of components we get (tarea):

E ′
∥ = E∥, B′

∥ = B∥,

E ′
⊥ = γ(E⃗⊥ + β⃗ × B⃗), B′

⊥ = γ(B⃗⊥ + β⃗ × E⃗).
(22)

• We see that E⃗ and B⃗ get mixed up, and if B⃗ = 0 in S, then when changing to S ′

we have B⃗′ ̸= 0.



Relativity
Quadrivectors

Covariance in
electrodynamics

.14

1.2- Covariance in electrodynamics

• In order to extend the Lorentz force, we introduce the momentum quadrivector
(four-momentum) Pµ = m◦Uβ , where m◦ is the rest mass. We write
Pµ = (E/c, P⃗), in which E is the total energy of the particle (which is E = m◦c2

at rest).
• The acceleration 4V (four-acceleration) is

aµ =
dUµ

dτ
, (23)

and in order to recover Newton’s 2nd law in the non-relativistic limit, the
four-force must be

Fµ = m◦aµ =
dPµ

dτ
. (24)

• We write the 4-Lorentz force with

Fµ =
q
c

Fµ
νUν . (25)

• in components, (tarea) F⃗ = q( v⃗
c × B⃗) + qE⃗ .
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