Radiative Processes

```
Simon Casassus
Astronomía, Universidad de Chile
http:://www.das.uchile.cl/~simon
    | Radiative Transfer
    II Electromagnetic wave propagation
    III Radiation
    IV Scattering and Diffraction
    V Free-free, Synchrotron and Compton Scattering
    VI Radiative Transitions
```


Part V

Free-free, Synchrotron and Compton Scattering

Outline

Relativity

(1) Relativity

Quadrivectors
Covariance in electrodynamics

Outline

Relativity

(1) Relativity

Quadrivectors
Covariance in electrodynamics

1.1- Quadrivectors

In this section we switch to CGS units, better adapted to describe the symmetry between \vec{E} and \vec{B} (bibliography: Rybicki \& Lightman).

- We define $x^{\mu}=(c t, x, y, z)$ as the contravariant position quadrivector, whose norm is $s^{2}=\eta_{\mu \nu} x^{\mu} x^{\nu}$ (using the implicit sum notation).
- We also introduce $x_{\mu}=(-c t, x, y, z)$ as the covariant position quadrivector.
- $x_{\mu}=\eta_{\mu \nu} x^{\nu}$, with

$$
\eta_{\mu \nu}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \tag{1}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- With $\eta^{\mu \nu} \equiv \eta_{\mu \nu}$, we have $\boldsymbol{x}^{\mu}=\eta^{\mu \nu} \boldsymbol{x}_{\nu}$.
- Note that $\eta^{\mu \sigma} \eta_{\sigma \nu}=\delta_{\nu}^{\mu}$.

1.1- Quadrivectors

- We change reference system from \mathcal{S} to \mathcal{S}^{\prime}, in uniform translation with velocity v towards \hat{x} relative to \mathcal{S}.
- A contravariant 4 V transforms as

$$
x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}, \text { where } \Lambda_{\nu}^{\mu}=\left[\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \tag{2}\\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

with $\beta=v / c$, and $\gamma=1 / \sqrt{1-v^{2} / c^{2}}$.

- For a covariant 4V (tarea),

$$
\begin{equation*}
x_{\mu}^{\prime}=\tilde{\Lambda}_{\mu}^{\nu} x_{\nu}, \text { with } \tilde{\Lambda}_{\mu}^{\nu}=\eta_{\mu \tau} \Lambda_{\sigma}^{\tau} \eta^{\sigma \nu} \tag{3}
\end{equation*}
$$

- $\tilde{\Lambda}_{\mu}^{\nu}$ is the inverse of Λ_{ν}^{μ} :

$$
\begin{equation*}
\Lambda_{\nu}^{\sigma} \tilde{\Lambda}_{\sigma}^{\mu}=\delta_{\nu}^{\mu}, \quad \text { and } \tilde{\Lambda}_{\mu}^{\alpha} x^{\mu}=x^{\alpha} \tag{4}
\end{equation*}
$$

1.1- Quadrivectors

- The product of two $4 \mathrm{Vs} A^{\mu}$ and B^{μ} is Lorentz invariant:

$$
\begin{equation*}
A^{\mu} B_{\mu}=A^{\prime \mu} B_{\mu}^{\prime} \tag{5}
\end{equation*}
$$

- We also have the velocity $4 \mathrm{~V}, U^{\mu} \equiv \frac{d x^{\mu}}{d \tau}$, in which $d \tau$ is the relativistic interval. (i.e. of proper time) between x^{μ} and $x^{\mu}+d x^{\mu}$.
- In components (tarea), $\boldsymbol{U}^{\mu}=\gamma_{u}(c, \vec{u})$, with $\gamma_{u}=1 / \sqrt{1-u^{2} / c^{2}}$.
- If we change to $U^{\prime}=\Lambda_{\nu}^{\mu} U^{\nu}$,

$$
\begin{equation*}
\gamma_{u^{\prime}}=\gamma \gamma_{u}\left(1-\frac{u v}{c^{2}} \cos (\theta)\right), \text { with } \theta=\angle(\vec{u}, \vec{v}) . \tag{6}
\end{equation*}
$$

- In the system that is bound to a particle with velocity $\vec{u}, U^{\prime}=c(1, \overrightarrow{0})$, for a 4 V A^{μ},

$$
\begin{equation*}
A^{\prime 0}=-\frac{1}{c} U^{\mu} A_{\mu}=-\frac{1}{c} U^{\mu} A_{\mu}^{\prime} . \tag{7}
\end{equation*}
$$

1.1- Quadrivectors

- We note that the phase of a plane wave must be Lorentz invariant because the simultaneous cancellation of \vec{E} and \vec{B} in one system implies their cancellation in any other system.
- Let's introduce $k^{\mu}=(\omega / c, \vec{k})$:

$$
\begin{equation*}
k^{\mu} x_{\mu}=\vec{k} \cdot \vec{x}-\omega t=\text { invariant } \Rightarrow k^{\mu} \text { is } 4 \mathrm{~V} . \tag{8}
\end{equation*}
$$

- We can use Eq. 7 to deduce the relativistic Doppler effect (tarea)

$$
\begin{equation*}
c k^{\prime 0}=\omega^{\prime}=-U^{\mu} k_{\mu}=\omega \gamma\left(1-\frac{V}{c} \cos (\theta)\right) . \tag{9}
\end{equation*}
$$

1.1- Quadrivectors

- The gradient operator is another example of 4 V . If λ is a scalar invariant, then

$$
\begin{align*}
\lambda_{, \mu} & \equiv \frac{\partial \lambda}{\partial x^{\mu}} \text { is a covariant } 4 \mathrm{~V}, \text { and } \tag{10}\\
\lambda^{, \mu} & \equiv \frac{\partial \lambda}{\partial x_{\mu}} \text { is a contravariant } 4 \mathrm{~V} . \tag{11}
\end{align*}
$$

- Proof: from $x^{\nu}=\tilde{\Lambda}_{\mu}^{\nu} x^{\prime \mu}$, we have that $\frac{\partial x^{\nu}}{\partial x^{\prime \mu}}=\tilde{\Lambda}_{\mu}^{\nu}$, and since $\lambda^{\prime}=\lambda$,

$$
\begin{equation*}
\lambda_{, \mu}^{\prime}=\frac{\partial x^{\nu}}{\partial x^{\prime \mu}} \frac{\partial \lambda}{\partial x^{\nu}} . \tag{12}
\end{equation*}
$$

- We extend the properties of 4 V s to tensors in general: a tensor of orden n transforms as the product of $n 4 \mathrm{Vs}$.
- For example,

$$
\begin{aligned}
T^{\prime \mu \nu} & =\Lambda_{\sigma}^{\mu} \Lambda_{\tau}^{\nu} T^{\sigma \tau}, \\
T_{\nu}^{\prime \mu} & =\Lambda_{\sigma}^{\mu}{ }_{\sigma} \tilde{\Lambda}_{\nu}^{\tau} T^{\sigma}{ }_{\tau} .
\end{aligned}
$$

Outline

(1) Relativity

Quadrivectors
Covariance in electrodynamics

1.2- Covariance in electrodynamics

- Charge conservation, $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{\jmath}=0$, can be written as

$$
\begin{equation*}
J_{, \mu}^{\mu}=0, \text { using the four-current } J^{\mu}=(\rho c, \vec{J}) . \tag{13}
\end{equation*}
$$

- In the Lorentz Gauge , and using CGS units,

$$
\begin{align*}
& \nabla^{2} \vec{A}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{A}}{\partial t^{2}}=-\frac{4 \pi}{c} \vec{J}=\partial_{\alpha} \partial^{\alpha} \vec{A} \tag{14}\\
& \nabla^{2} \Phi-\frac{1}{c^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=-4 \pi \rho=\partial_{\alpha} \partial^{\alpha} \Phi \tag{15}
\end{align*}
$$

- With $A^{\mu}=(\Phi, \vec{A})$,

$$
\begin{equation*}
A_{, \alpha}^{\beta, \alpha}=-\frac{4 \pi}{c} J^{\beta}, \text { in which } A_{, \alpha}^{\beta, \alpha}=\frac{\partial^{2}}{\partial x_{\alpha} \chi^{\alpha}} A^{\beta} . \tag{16}
\end{equation*}
$$

- The Lorentz gauge $\vec{\nabla} \cdot \vec{A}+\frac{1}{c} \frac{\partial \Phi}{\partial t}=0$ can be written simply as $A^{\alpha}{ }_{, \alpha}=0$.

1.2- Covariance in electrodynamics

- In order to write the Maxwell equations in their covariant form, we introduce the field tensor

$$
\begin{equation*}
F_{\mu \nu}=A_{\nu, \mu}-A_{\mu, \nu} . \tag{17}
\end{equation*}
$$

- With $\vec{B}=\vec{\nabla} \times \vec{A}$ and $\vec{E}=-\vec{\nabla} \Phi-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}$ (tarea): 2

$$
F_{\mu \nu}=\left[\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \tag{18}\\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right]
$$

- The Maxwell equations $\vec{\nabla} \cdot \vec{E}=4 \pi \rho$ and $\vec{\nabla} \times \vec{B}-\frac{1}{c} \frac{\partial \vec{E}}{\partial t}=\frac{4 \pi}{c} \vec{J}$ can be written (tarea)

$$
\begin{equation*}
F_{\mu \nu}^{\nu}=\frac{4 \pi}{c} J_{\mu} \tag{19}
\end{equation*}
$$

- The 'internal' equations $\vec{\nabla} \cdot \vec{B}=0$ and $\vec{\nabla} \times \vec{E}+\frac{1}{c} \frac{\partial \vec{B}}{\partial t}=0$ are written (tarea)

$$
\begin{equation*}
F_{\mu \nu, \sigma}+F_{\sigma \mu, \nu}+F_{\nu \sigma, \mu}=0 . \tag{20}
\end{equation*}
$$

1.2- Covariance in electrodynamics

- We use the covariance of $F_{\mu \nu}$ to infer the transformation laws for the fields \vec{E} y \vec{B} :

$$
\begin{equation*}
F_{\mu \nu}^{\prime}=\tilde{\Lambda}_{\mu}^{\alpha} \tilde{\Lambda}_{\nu}^{\beta} F_{\alpha \beta} \tag{21}
\end{equation*}
$$

- In terms of components we get (tarea):

$$
\begin{array}{ll}
E_{\|}^{\prime}=E_{\|}, & B_{\|}^{\prime}=B_{\|} \tag{22}\\
E_{\perp}^{\prime}=\gamma\left(\vec{E}_{\perp}+\vec{\beta} \times \vec{B}\right), & B_{\perp}^{\prime}=\gamma\left(\vec{B}_{\perp}+\vec{\beta} \times \vec{E}\right)
\end{array}
$$

- We see that \vec{E} and \vec{B} get mixed up, and if $\vec{B}=0$ in \mathcal{S}, then when changing to \mathcal{S}^{\prime} we have $\vec{B}^{\prime} \neq 0$.

1.2- Covariance in electrodynamics

- In order to extend the Lorentz force, we introduce the momentum quadrivector (four-momentum) $P^{\mu}=m_{0} U^{\beta}$, where m_{0} is the rest mass. We write $P^{\mu}=(E / c, \vec{P})$, in which E is the total energy of the particle (which is $E=m_{0} c^{2}$ at rest).
- The acceleration 4 V (four-acceleration) is

$$
\begin{equation*}
a^{\mu}=\frac{d U^{\mu}}{d \tau} \tag{23}
\end{equation*}
$$

and in order to recover Newton's 2nd law in the non-relativistic limit, the four-force must be

$$
\begin{equation*}
F^{\mu}=m_{\circ} a^{\mu}=\frac{d P^{\mu}}{d \tau} \tag{24}
\end{equation*}
$$

- We write the 4 -Lorentz force with

$$
\begin{equation*}
F^{\mu}=\frac{q}{c} F_{\nu}^{\mu} U^{\nu} . \tag{25}
\end{equation*}
$$

- in components, (tarea) $\vec{F}=q\left(\frac{\vec{v}}{c} \times \vec{B}\right)+q \vec{E}$.

