
.1

Part II

Electromagnetic wave propagation
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1 Electromagnetic waves

1.1 Maxwell Equations

• In the MKS system (or S.I.), the equations of electrodynamics are, :

∇⃗ · D⃗ = ρ, (1)
∇⃗ · B⃗ = 0, (2)

∇⃗ × E⃗ = −∂B⃗

∂t
, (3)

∇⃗ × H⃗ = J⃗ +
∂D⃗

∂t
. (4)

• For linear media, D⃗ = ϵE⃗ and B⃗ = µH⃗ .
• In vacuum, ϵ = ϵ◦ and µ = µ◦.

.3
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1.2 Electrodynamic potentials

• Since ∇⃗ · B⃗ = 0, we have
B⃗ = ∇⃗ × A⃗. (5)

• For E⃗, we use Eq. 5 and Eq. 3:

∇⃗ ×

(
E⃗ +

∂A⃗

∂t

)
︸ ︷︷ ︸

≡−∇⃗Φ

= 0, ⇒

E⃗ = −∇⃗ϕ− ∂A⃗

∂t
. (6)

.4

1.3 Wave equations

• We want to write equations that determine the electrodynamic potentials A⃗
and Φ.

• Using the Maxwell Equations in vacuum to connect directly with E⃗ and B⃗,
we have

∇⃗ · E⃗ =
ρ

ϵ◦
⇒ ∇2Φ +

∂

∂t

(
∇⃗ · A⃗

)
=

ρ

ϵ◦
, (7)

∇⃗ × 1

µ◦
B⃗ = J⃗ +

1

ϵ◦

∂E⃗

∂t
⇒

∇2A⃗− 1

c2
∂2A⃗

∂t2
− ∇⃗

(
∇⃗ · A⃗+

1

c2
∂Φ

∂t

)
︸ ︷︷ ︸

term for the Lorentz condition

= −µ◦J⃗. (8)

.5

• If the term highlighted in Eq. 8 is null, which is called the Lorentz Condition,

∇⃗ · A⃗+
1

c2
∂Φ

∂t
= 0, (9)

then we recover the wave equation for the potentials:

∇2Φ− 1

c2
∂2Φ

∂t2
= − ρ

ϵ◦
, (10)

∇2A⃗− 1

c2
∂2A⃗

∂t2
= −µ◦J⃗. (11)
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• To fulfill the Lorentz condition, we use the freedom of gauge:

A⃗ −→ A⃗′ = A⃗+ ∇⃗Λ, (12)

which leaves invariant B⃗ = ∇⃗ × A⃗.
• To also preserve E⃗ = −∇⃗Φ− ∂A⃗/∂t, it is necessary that

Φ −→ Φ′ = Φ− ∂Λ

∂t
. (13)

.6

• If A⃗ and Φ both fulfill the general potential equations (Eqs. 8 and 7), but do
not fulfill the Lorentz condition, then we can search for Λ(x⃗, t) so that A⃗′ and
Φ′ do satisfy the Lorentz condition.

• Injecting Eqs. 12 and 13 in Eq. 9, we reach an equation for Λ(x⃗, t):

∇⃗ · A⃗+
1

c2
∂Φ

∂t
+∇2Λ− 1

c2
∂2Λ

∂t
= 0, (14)

which is essentially a wave equation with a source term, i.e. exactly the type
of equations that we will propose solutions for.

.7

• Independently of the Lorentz condition, we can manipulate the Maxwell equa-
tions to reach (tarea):

∇2E⃗ − 1

c2
∂2E⃗

∂t2
= − 1

ϵ◦

(
−∇⃗ρ− 1

c2
∂J⃗

∂t

)
, (15)

∇2B⃗ − 1

c2
∂2B⃗

∂t2
= −µ◦∇⃗ × J⃗, (16)

which are both wave equations with source terms.
• Away from the sources, i.e. in vacuum, both equations become the homoge-

neous wave equation.
.8

1.4 Poynting’s theorem

• The power exerted by the electromagnetic force F⃗ = qv⃗× B⃗+ qE⃗ on a single
charge q with velocity v⃗ is v⃗ · F⃗ = qv⃗ · E⃗.

• The power exerted on the charge density distribution ρ and on the current
density distribution J⃗ = ρv⃗ inside a volume dV is thus

dP = J⃗ · E⃗ dV

• The total power exerted by the (E⃗, B⃗) field on the charges inside a volume V
is

P =

∫
V
J⃗ · E⃗d3x. (17)

.9
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• We want to connect P with the energy stored in the fields. Using the Ampère-
Maxwell equation (Eq. 4) we solve for J⃗ , and following standard handling
(tarea),

P =

∫
V

[
−∇⃗ · (E⃗ × H⃗) + H⃗ · (∇⃗ × E⃗)− E⃗ · ∂D⃗

∂t

]
d3x. (18)

• Now with the induction law, ∇⃗ × E⃗ = −∂B⃗
∂t

(Eq. 3),

P =

∫
V

[
−∇⃗ · (E⃗ × H⃗)− H⃗ · ∂B⃗

∂t
− E⃗ · ∂D⃗

∂t

]
d3x. (19)

.10

• Remembering that for a linear medium H⃗ · ∂B⃗
∂t

= 1
2

∂
∂t
(H⃗ · B⃗), and E⃗ · ∂D⃗

∂t
=

1
2

∂
∂t
(E⃗ · D⃗), we reach

P =

∫
V
J⃗ · E⃗d3x = −

∫
V

[
∂u

∂t
+ ∇⃗ · S⃗

]
d3x, (20)

where we recognize

u =
1

2
E⃗ · D⃗ +

1

2
B⃗ · H⃗, (21)

and
S⃗ = E⃗ × H⃗. (22)

• For any volume V , we conclude that

∂u

∂t
+ ∇⃗ · S⃗ = −J⃗ · E⃗. (23)

.11

• In the same way as for energy conservation, Eq. 23, we can also write the
equation for the conservation of linear momentum. Newton’s 2nd law for the
variation of linear momentum δp⃗mec inside a volume δV is:

d δp⃗mec

dt
= ρE⃗δV + ρv⃗ × B⃗δV . (24)

• In total,
dp⃗mec

dt
=

∫
V
d3x(ρE⃗ + ρv⃗ × B⃗). (25)

.12
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• Using Maxwell’s equation to replace ρ and J⃗ , we reach (tarea):

d

dt
(p⃗mec + p⃗fields)|i =

∑
j

∫
V
d3x

∂Tij

∂xj

, (26)

with the following notations:

p⃗fields =

∫
ϵ◦(E⃗ × B⃗)d3x =

1

c2

∫
d3xS⃗, (27)

which we associate to the momentum in the fields since it fulfills a similar role
as p⃗mec, and

Tij = ϵ◦

[
EiEj + c2BiBj −

1

2

(
E⃗ · E⃗ + c2B⃗ · B⃗

)
δij

]
, (28)

which is the tensor of electromagnetic tensions.
.13

• For each component i the integrand of Eq. 26 (involving Tij) can be seen as a
divergence, so

d

dt
(p⃗mec + p⃗fields)|i =

∮
S

∑
j

TijnjdA, (29)

where we recognize a flux integral over the surface bounding the volume V .
.14

2 Wave propagation in vacuum

2.1 Spectral decomposition

• In the absence of sources, if we decompose

E⃗(x⃗, t) =
1

2π

∫
dωE⃗(x⃗, ω)eiwt, (30)

the Maxwell equations yield

(∇2 + µϵω2)

{
E⃗

B⃗

}
= 0. (31)

• If ϵ and µ are both real, the solutions are e±ikx, with k =
√
µϵω

• We define the phase velocity vϕ = ω
k
= c

n
, where n =

√
µϵ

µ◦ϵ◦
is the refraction

index.
• In general, {

Ei

Bi

}
=

1

2π

∫
dω

{
Ei
Bi

}
e±ik⃗·x⃗−iwt, (32)

.15
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• We recognize d’Alembert’s solution for the wave equation,{
Ei

Bi

}
=

1

2π

∫
dω

{
Ei
Bi

}
e±ik(n̂·x⃗−vϕt), (33)

where each component i has a form f(n̂ · x⃗− vϕt)+ g(n̂ · x⃗+ vϕt), and where
n̂ is the direction of propagation.

• Using Maxwell’s equations (tarea), n̂ · E⃗ = 0, n̂ · B⃗ = 0 and B⃗ = n
c
n̂× E⃗ .

.16

• For harmonic fields it is customary to use complex notation (because of the
spectral decomposition), so that S⃗ = ℜ(E⃗)×ℜ(H⃗).

• In general for products of the type

ℜ(ae−iωt)ℜ(be−iωt) =
1

2
ℜ(a∗b+ abe−2iωt), (34)

it is also customary to take time averages ⟨(· · · )⟩T = limT→∞
1
T

∫∞
0
(· · · )dt,

and
⟨ℜ(ae−iωt)ℜ(be−iωt)⟩ = 1

2
ℜ(a∗b). (35)

.17

• We therefore have

⟨S⃗⟩ = 1

2
E⃗ × H⃗∗ =

1

2

√
ϵ

µ
|E|2n̂. (36)

And similarly,

⟨u⟩ = 1

4
(ϵE⃗ · E⃗∗ +

1

µ
B⃗ · B⃗∗) =

ϵ

2
|E|2. (37)

• Finally, ⟨S⃗⟩ = vϕun̂.
.18

2.2 Connection with radiative transfer

• We can now see that the concept of rays associated to the radiative trans-
fer equation, which describes the transport of radiation in a straight line, is
connected to the idea of a plane monochromatic wave with direction of prop-
agation k⃗.

• For a plane wave then ⟨S⃗⟩ = vϕuk̂ is the flux of energy in direction k̂.
• In radiative transfer notation, the flux density in direction k◦ would be

Fν(x⃗) =

∫
dΩIν(k̂, x⃗) k̂ · k̂◦. (38)

• Therefore the specific intensity field for a monochromatic plane wave is

Iν(k̂) = ∥S⃗∥ δ(k̂ − k̂◦). (39)
.19
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2.3 Polarization

• In summary, the electric field of a monochromatic wave can be decomposed
in two linearly polarized waves,

E⃗(x⃗, t) = (ϵ̂1E1 + ϵ̂2E2)e
i(k⃗·x⃗−ωt), (40)

whose total describes, in general, an eliptically polarized wave.
• With a change of vectorial basis to ϵ̂± = 1√

2
(ϵ̂1± iϵ̂2), we can also decompose

E⃗ in two circularly polarized waves,

E⃗(x⃗, t) = (ϵ̂+E+ + ϵ̂−E−)e
i(k⃗·x⃗−ωt). (41)

.20

• With the notation

E1 = E1eiϕ1 , E2 = E2eiϕ2 ,
E+ = E+eiϕ+ , E− = E−eiϕ− ,

we have 
linear polarization : ϕ2 − ϕ1 = 0.

circular polarization : |ϕ2 − ϕ1| = π
2

and E2 = E1.
the general case is eliptical, with : tan(χ) = E1

E2
cos(ϕ1)
cos(ϕ2)

.

.21

• It is customary to use the Stokes parameters to characterize the polarization
state of monochromatic light:

I = E1E
∗
1 + E2E

∗
2 = E2

1 + E2
2 ,

Q = E1E
∗
1 − E2E

∗
2 = E2

1 − E2
2 ,

U = E1E
∗
2 − E2E

∗
1 = 2E1E2 cos(ϕ2 − ϕ1),

V = i(E1E
∗
2 − E2E

∗
1) = 2E1E2 sin(ϕ2 − ϕ1).

(42)
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• We see that Stokes I (the total “radiance”) is I ∝ |S⃗|, Q and U measure linear
polarization, while V measure circular polarization. In order to make this
obvious it is best to use mental experiments with polarizors that select specific
types of polarization (see class).

• For a strictly monochromatic wave, it follows that

I2 = Q2 + U2 + V 2. (43)
.22

2.4 Quasi-monochromatic waves

• In order to obtain E⃗(x⃗, ω), we need to know E⃗(t) for all t, since

E⃗(x⃗, ω) =

∫ +∞

−∞
E⃗(x⃗, t)eiωtdt. (44)

• So in practice, we treat E1 and E2 as random variables, i.e. for a wave in
vacuum, described by Eq. 40,

E⃗(x⃗, t) = (E1(t)ê1 + E2(t)ê2)e
i(k⃗·x⃗−ωt). (45)

Alternatively we can also replace the time dependence in Eq. 45 with a prob-
ability density, which itself may depend on time.

• To fix ideas, let’s remember that ∆t∆ω = 1 for Gaussian spectra, where ∆t is
the ‘coherence time’, and ∆ω is the ‘bandwidth’ of the quasi-monochromatic
wave.

.23

• In order to measure the Stokes parameters, we need averages of the kind

⟨E1E
∗
2⟩ = lim

T→∞

1

T

∫
dtE1(t)E

∗
2(t)dt. (46)

• We therefore have

⟨Q2⟩+ ⟨U2⟩+ ⟨V 2⟩ = ⟨I2⟩−
4(⟨E2

1 ⟩⟨E2
2 ⟩ − ⟨E1E2ei(ϕ2−ϕ1)⟩⟨E1E2e−i(ϕ2−ϕ1)⟩

= ⟨I2⟩−
4(⟨E2

1 ⟩⟨E2
2 ⟩ − ⟨E2

1E2
2 cos

2(ϕ2 − ϕ1)⟩ − ⟨E2
1E2

2 cos
2(ϕ2 − ϕ1)⟩), (47)

and, by Shwartz’ inequality (⟨ab⟩ ≤ ⟨a⟩⟨b⟩),

I2 ≥ Q2 + U2 + V 2. (48)
.24
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• For a wave with a single and constant eliptical polarization state, then the
equality holds in Eq. 48.

• On the other hand, for a completely unpolarized wave, Q = U = V = 0.
• The Stokes parameters are additive. Proof: consider a sum of N different

waves

E⃗ =
N∑
k=1

E⃗k =
∑

(ϵ̂1E
k
1 + ϵ̂2E

k
2 )e

i(k⃗·x⃗−ωt). (49)

Because each Ek
i (t) is statistically independent, ⟨Ek

i E
l∗
j ⟩ = δkl⟨Ek

i E
k∗
j ⟩, and

I
Q
U
V

 =
∑
k


Ik
Qk

Uk

Vk

 . (50)

.25

• We can therefore decompose an arbitrary set of Stokes parameters in


I
Q
U
V

 =

unpol︷ ︸︸ ︷
I −

√
Q2 + U2 + V 2

0
0
0

+

pol︷ ︸︸ ︷
√

Q2 + U2 + V 2

Q
U
V

 . (51)

• The first term ‘unpol’ is completely unpolarized since Q = U = V = 0,
while the second term ‘pol’ is completely polarized since it satisfies I2 =
Q2 + U2 + V 2 (Eq. 43).

.26

• The total polarized intensity of a wave train is thus be Ipol =
√

Q2 + U2 + V 2.
• We define the polarization fraction as

Π =
Ipol

I
. (52)

.27
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3 Wave propagation in a medium

3.1 Constitutive equations

• Each monochromatic component of the field E⃗, B⃗ must fulfill the following
constitutive relations:

P⃗ = ϵ◦χE⃗ −→ P⃗ (ω) = ϵ◦χ(ω)E⃗(ω),

B⃗ = µH⃗ −→ B⃗(ω) = µ(ω)H⃗(ω),

J⃗ = σE⃗ −→ J⃗(ω) = σ(ω)E⃗(ω),

(53)

in which we have added Ohm’s law.
• We note that χ(−ω) = χ∗(ω), so that χ(t) = 1

2π

∫
dωχ(ω) exp(−iωt) be real

(and similarly for µ and σ).
.28

• The Fourier convolution theorem states that if X(ω) = Y (ω)Z(ω), then

X(t) =

∫ ∞

−∞
Y (t− t′)Z(t′)dt′, (54)

where Y (t) = 1
2π

∫
dωY (ω) exp(−iωt), etc..

• Applying the convolution theorem to χ (for example),

P (t) =

∫ ∞

−∞
G(t− t′)E(t′)dt′, with

G(t) =
1

2π

∫ ∞

−∞
ϵ◦χ(ω)e

−iωtdω. (55)

.29

• We see that P (t) depends on the history of E⃗(t′), which bears physical sense
only in the past, for t′ < t, so G(t) = 0 if t < 0. We will use this property in
the next section.

• This time we write the monochromatic wave as

E⃗(t) = A⃗ cos(ω◦t) + B⃗ sin(ω◦t) = ℜ(E⃗c(t)), (56)

with E⃗c = (A⃗− iB⃗)(cos(ω◦t) + i sin(ω◦t)).
• In the Fourier plane,

E(ω) = π [(A+ iB)δ(ω − ω◦) + (A− iB)δ(ω + ω◦)] . (57)

• We can evaluate

P (t) =
1

2π

∫ ∞

−∞
ϵ◦χ(ω)E(ω)e−iωtdω

= ℜ
[ϵ◦
2
(A− iB)χ(ω◦)e

−iω◦t
]
= ℜ[Pc(t)], (58)

using χ(−ω) = χ∗(ω), and where Pc = ϵ◦χ(ω◦)Ec(t). .30
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• With the spectral decomposition of the constitutive relations we can rewrite
the Maxwell equations in their harmonic versions. In the absence of free
charges,

∇⃗ · E⃗(ω) = 0, ∇⃗ × E⃗(ω) = −iωµ(ω)H⃗(ω),

∇⃗ · H⃗(ω) = 0, ∇⃗ × H⃗(ω) = −iωϵ(ω)E⃗(ω),
(59)

where (tarea)

ϵ(ω) = ϵ◦(1 + χ(ω)) + i
σ(ω)

ω
. (60)

• Note that both susceptibility and conductivity contribute to the imaginary part
of ϵ :

ℑ(ϵ) = ϵ◦ℑ(χ) + ℜ(σ/ω). (61)
.31

3.2 Kramers-Kronig relations

• From physical considerations we can anticipate that the induced P (t) depends
on the history of the applied field, or

P⃗ (t) =

∫ ∞

−∞
G(t, t′)E⃗(t′)dt′ (62)

(note difference with Eq. 55).
• Let’s assume that E⃗ = δ(t − t◦)E⃗◦. Then P⃗ (t) = G(t, t◦)E⃗◦, and G is the

polarization resulting from a delta-unitary electric field.
• If the properties of the medium do not change in time, G(t, t◦) = G(t − t◦),

and we recover Eq. 55.
• Causality requires that G(τ) = 0 if τ < 0, so

ϵ◦χ(ω) =

∫ ∞

0

dtG(t)eiωt. (63)

.32

• We extend Eq. 63 to the complex plane with ω̃ = ωR + iωI , where ωI > 0.

ϵ◦χ(ω̃) =

∫ ∞

0

dtG(t)eiω̃t. (64)

• If
∫∞
0

|G(t)|dt converges, so does
∫∞
0

G(t)eiω̃tdt, and χ(ω̃) is analytical in the
superior C plane (ωI > 0).

• Therefore χ(ω̃)/(ω̃ − ω) is analytical except in the pole ω̃ = ω, where ω is a
point along the real axis.
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• We can apply the Kramers-Kronig theorem (proof: see Bohren & Huffman,
Sec. 2.3.2), which gives

iπχ(ω) = P

∫ ∞

−∞

χ(Ω)

Ω + ω
dΩ, (65)

where P indicates Cauchy’s ‘principal value’

P

∫ ∞

−∞

χ(Ω)

Ω + ω
dΩ =

lim
a→0

(∫ ω−a

−∞

χ(Ω)

Ω + ω
dΩ +

∫ ∞

ω+a

χ(Ω)

Ω + ω
dΩ

)
. (66)

.33

• Using that χ∗(Ω) = χ(−Ω) we can restrict the integration to Ω > 0, and use
χ = χR + iχI to rewrite Eq. 66:

χR(ω) =
2

π
P

∫ ∞

0

ΩχI(Ω)

Ω2 − ω2
dΩ, (67)

χI(ω) = −2ω

π
P

∫ ∞

0

χR(Ω)

Ω2 − ω2
dΩ. (68)

• Similar relationships exists for µ y σ.
.34

3.3 Monochromatic waves

• We now extend the monochromatic waves to homogeneous media. We inject

E⃗c = E⃗◦e
i(k⃗·x⃗−ωt), and H⃗c = H⃗◦e

i(k⃗·x⃗−ωt), (69)

into Maxwell’s equations.
• Allowing for k⃗ ∈ C, k⃗ = (kR + ikI)︸ ︷︷ ︸

k

ê,

E⃗c = E⃗◦e
−k⃗I ·x⃗ei(k⃗R·x⃗−ωt). (70)

• The harmonic Maxwell equations (Eqs. 59) yield:

k⃗ · E⃗◦ = 0 k⃗ · H⃗◦(ω) = 0

k⃗ × E⃗◦ = ωµH⃗◦, k⃗ × H⃗◦ = −ωϵE⃗◦.
(71)

• And with k⃗ · k⃗ = ω2ϵµ ,

k2
R − k2

I + 2i⃗kI · k⃗R = ω2ϵµ (tarea). (72)
.35
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• For a homogeneous wave (no free charges),

k⃗ = (kR + ikI)︸ ︷︷ ︸
k

ê,

and k = ωN/c, where N is the complex refractive index,

N = c
√
ϵµ =

√
ϵµ

ϵ◦µ◦
.

• We set N = n+ iκ, where n and κ are both ∈ R+.
• Eq. 70 gives:

E⃗c = E⃗◦e
− 2π

λ
κzei(

2πnz
λ

−iωt). (73)

• ⇒ the imaginary part of N corresponds to absorption.
.36

• We can apply the Kramers-Kronig relations to (N(ω)−1) (the −1 is motivated
by limω→∞ N(ω) = 1):

n(ω)− 1 = 2
π
P
∫∞
0

Ωκ(Ω)
Ω2−ω2dΩ

κ(ω) = −2ω
π
P
∫∞
0

n(Ω)
Ω2−ω2dΩ

(74)

• We see that the absorption in a medium is also related to the real refractive
index.

.37
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