Part III

Radiation

Contents

III 1
1 Green function for the wave equation 1
2 Retarded Potentials 3
2.1 Application of the Green function to the electrodynamic potentials 3
2.2 Retarded electromagnetic field 4
3 Multipolar Radiation 5
3.1 Wave zone 5
3.2 Dipolar radiation 6
3.3 Magnetic dipole and electric quadrupole radiation 7
4 Radiation from a single charge 8
4.1 Liénard-Wiechert potentials 8
4.2 Larmor Formula 9
4.3 Radiation reaction 9
5 Non-relativistic applications 9

1 Green function for the wave equation

- In order to determine $\vec{A}(\vec{x}, t)$ and $\Phi(\vec{x}, t)$, we need to solve the wave equation with source terms. For a generic field $\Psi(\vec{x}, t)$,

$$
\begin{equation*}
\nabla^{2} \Psi-\frac{1}{c^{2}} \frac{\partial \Psi}{\partial t^{2}}=-4 \pi f(\vec{x}, t) \tag{1}
\end{equation*}
$$

- It is convenient to use the Fourier time-domain,

$$
\begin{equation*}
\psi(\vec{x}, t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \psi(\vec{x}, \omega) e^{-i \omega t} d \omega \tag{2}
\end{equation*}
$$

whose inverse is

$$
\begin{equation*}
\psi(\vec{x}, \omega)=\int_{-\infty}^{+\infty} \psi(\vec{x}, t) e^{i \omega t} d t \tag{3}
\end{equation*}
$$

- Injecting Ec. 2 in Ec. 1, we reach the Helmholtz equation:

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \Psi(\vec{x}, \omega)=-4 \pi f(\vec{x}, \omega) \tag{4}
\end{equation*}
$$

- The Helmholtz equation Eq. 4 is very similar to the Poisson equation, and we can anticipate the use of similar machinery in its solution. The Green function satisfies

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) G_{k}\left(\vec{x}, \vec{x}^{\prime}\right)=-4 \pi \delta\left(\vec{x}, \vec{x}^{\prime}\right) \tag{5}
\end{equation*}
$$

- Changing coordinates to a system with origin in \vec{x}^{\prime}, we see that Eq. 5 has spherical symmetry, and $G_{k}\left(\vec{x}, \vec{x}^{\prime}\right)=G_{k}(R)$, with $R=|\vec{R}|$ and $\vec{R}=\vec{x}-\vec{x}^{\prime}$
- Eq. 5 can thus be written as

$$
\begin{equation*}
\frac{1}{R} \frac{d^{2}}{d R^{2}}\left(R G_{k}\right)+k^{2} G_{k}=-4 \pi \delta(\vec{R}) \tag{6}
\end{equation*}
$$

- If $R \neq 0$, the solution to Eq. 6 is $R G_{k}=A e^{i k R}+B e^{-i k R}$, where the constants A y B do not depend on k. In order to dertermine these constants, we use the case $k=0$, i.e. Poisson, whose solution is $G_{k=0}(R)=1 / R, \longrightarrow A+B=1$.
- Thus the general solution to Eq. 6 is

$$
G_{k}(R)=A G_{k}^{+}(R)+B G_{k}^{-}(R), \text { with } G_{k}^{ \pm}=\frac{e^{ \pm i k R}}{R} \quad \text { and } A+B=1
$$

- The A and B values depend on the initial conditions, i.e. on the boundary conditions in time. To see this, we return to the time domain and we generalize Eq. 5 .

$$
\begin{equation*}
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial}{\partial t^{2}}\right) G^{ \pm}\left(\vec{x}, t ; \vec{x}^{\prime}, t^{\prime}\right)=-4 \pi \delta\left(\vec{x}-\vec{x}^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{8}
\end{equation*}
$$

- Now, returning to the frequency domain ω, we generalize Eq. 5 to

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) G_{k}\left(\vec{x}, \vec{x}^{\prime} ; t^{\prime}\right)=-4 \pi \delta\left(\vec{x}, \vec{x}^{\prime}\right) e^{i \omega t^{\prime}} \tag{9}
\end{equation*}
$$

with solution $G_{k}^{ \pm}(R) e^{i \omega t^{\prime}}$.

- To return once more to the time domain, we use Eq. 2, and

$$
G^{ \pm}\left(R ; t, t^{\prime}\right)=G^{ \pm}(R, \tau)=\frac{1}{2 \pi} \int \frac{e^{ \pm i k R-i \omega \tau}}{R} d \omega
$$

where $\tau=t-t^{\prime}$.

- For a non-dispersive medium (one with $\omega / k=c$), we reach

$$
\begin{equation*}
G^{ \pm}\left(\vec{x}, t ; \vec{x}^{\prime}, t^{\prime}\right)=\frac{\delta\left(t^{\prime}-\left[t \mp \frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}\right]\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} \tag{10}
\end{equation*}
$$

- We apply this Green function to write the generic solutions of Ec. 1 :

$$
\begin{equation*}
\Psi^{ \pm}(\vec{x}, t)=\int d^{3} x^{\prime} d t^{\prime} G^{ \pm}\left(\vec{x}, t ; \vec{x}^{\prime}, t^{\prime}\right) f\left(\vec{x}^{\prime}, t^{\prime}\right) \tag{11}
\end{equation*}
$$

- The ${ }^{+}$case corresponds to the retarded solution, with an entry or an initial condition $\psi_{\text {in }}$ (valid before the sources f are activated, at $t=0$, so $f(\vec{x}, t)=0$ if $t<0$):

$$
\begin{equation*}
\Psi^{+}(\vec{x}, t)=\Psi_{\text {in }}(\vec{x}, t)+\int d^{3} x^{\prime} d t^{\prime} G^{+}\left(\vec{x}, t ; \vec{x}^{\prime}, t^{\prime}\right) f\left(\vec{x}^{\prime}, t^{\prime}\right) \tag{12}
\end{equation*}
$$

where we see that if $t<0$, there is no \vec{x} for any given \vec{x}^{\prime} such that $\left[t-\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}\right]>$ 0 . Hence if $t<0, \int d^{3} x^{\prime} d t^{\prime} G^{+}\left(\vec{x}, t ; \vec{x}^{\prime}, t^{\prime}\right) f\left(\vec{x}^{\prime}, t^{\prime}\right)=0$, and $\Psi(\vec{x}, t)=$ $\Psi_{\text {in }}(\vec{x}, t)$.

- Instead the - case corresponds to the anticipated solution, with an exit condition $\Psi_{\text {out }}$ (after the sources f are deactivated, at $t=0$, so $f(\vec{x}, t)=0$ if $t>0$),

$$
\begin{equation*}
\Psi^{-}(\vec{x}, t)=\Psi_{\text {out }}(\vec{x}, t)+\int d^{3} x^{\prime} d t^{\prime} G^{-}\left(\vec{x}, t ; \vec{x}^{\prime}, t^{\prime}\right) f\left(\vec{x}^{\prime}, t^{\prime}\right) \tag{13}
\end{equation*}
$$

where we see that if $t>0$, there is no \vec{x} for any given \vec{x}^{\prime} such that $\left[t+\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}\right]<$ 0 . Hence if $t>0, \int d^{3} x^{\prime} d t^{\prime} G^{-}\left(\vec{x}, t ; \vec{x}^{\prime}, t^{\prime}\right) f\left(\vec{x}^{\prime}, t^{\prime}\right)=0$, and $\Psi(\vec{x}, t)=$ $\Psi_{\text {out }}(\vec{x}, t)$.

- In general we use the retarded solution Ψ^{+}.

2 Retarded Potentials

2.1 Application of the Green function to the electrodynamic potentials

- We normally use the retarded solution, with initial condition $\Psi_{\text {in }}=0$, or, in compact notation,

$$
\begin{equation*}
\Psi(\vec{x}, t)=\int d^{3} x^{\prime} \frac{\left[f\left(\vec{x}^{\prime}, t^{\prime}\right)\right]_{\mathrm{ret}}}{\left|\vec{x}-\vec{x}^{\prime}\right|} \tag{14}
\end{equation*}
$$

where $[(\cdots)]_{\mathrm{re}}$ means to evaluate in $t^{\prime}=t-\left|\vec{x}-\vec{x}^{\prime}\right| / c$.

- Applying to the electrodynamic potentials,

$$
\begin{align*}
& \Phi(\vec{x}, t)=\frac{1}{4 \pi \epsilon_{\circ}} \int d^{3} x^{\prime} \frac{\left[\rho\left(\vec{x}^{\prime}, t^{\prime}\right)\right]_{\mathrm{ret}}}{\left|\vec{x}-\vec{x}^{\prime}\right|} \tag{15}\\
& \vec{A}(\vec{x}, t)=\frac{\mu_{\circ}}{4 \pi} \int d^{3} x^{\prime} \frac{\left[\vec{J}\left(\vec{x}^{\prime}, t^{\prime}\right)\right]_{\mathrm{ret}}}{\left|\vec{x}-\vec{x}^{\prime}\right|} \tag{16}
\end{align*}
$$

2.2 Retarded electromagnetic field

- In order to calculate \vec{E} and \vec{B}, we use $\vec{B}=\vec{\nabla} \times \vec{A}$ and $\vec{E}=-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t}$.
- Alternatively, we can use the Maxwell equations to reach:

$$
\begin{align*}
\nabla^{2} \vec{E}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}} & =-\frac{1}{\epsilon_{\circ}}\left(-\vec{\nabla} \rho-\frac{1}{c^{2}} \frac{\partial \vec{J}}{\partial t}\right) \tag{17}\\
\nabla^{2} \vec{B}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}} & =-\mu_{\circ} \vec{\nabla} \times \vec{J} \tag{18}
\end{align*}
$$

- Using the Green function, we get

$$
\begin{align*}
\vec{E}(\vec{x}, t) & =\frac{1}{4 \pi \epsilon_{\circ}} \int d^{3} x^{\prime} \frac{1}{R}\left[-\vec{\nabla}^{\prime} \rho-\frac{1}{c^{2}} \frac{\partial \vec{J}}{\partial t^{\prime}}\right]_{\mathrm{ret}} \tag{19}\\
\vec{B}(\vec{x}, t) & =\frac{\mu_{\circ}}{4 \pi} \int d^{3} x^{\prime} \frac{1}{R}\left[\vec{\nabla}^{\prime} \times \vec{J}\right]_{\mathrm{ret}} \tag{20}
\end{align*}
$$

- The expressions for the retarded fields Eqs. 19 and 21 can also be written in a form that connects directly with the static expressions (tarea):

$$
\begin{align*}
& \vec{E}(\vec{x}, t)= \frac{1}{4 \pi \epsilon_{\circ}} \int d^{3} x^{\prime}\left\{\frac{\hat{R}}{R^{2}}\left[\rho\left(\vec{x}^{\prime}, t^{\prime}\right)\right]_{\mathrm{ret}}+\right. \\
&\left.\frac{\hat{R}}{c R}\left[\frac{\partial \rho\left(\vec{x}^{\prime}, t^{\prime}\right)}{\partial t}\right]_{\mathrm{ret}}-\frac{1}{c^{2} R}\left[\frac{\partial \vec{J}}{\partial t}\right]_{\mathrm{ret}}\right\} \tag{21}\\
& \vec{B}(\vec{x}, t)=\frac{\mu_{\circ}}{4 \pi} \int d^{3} x^{\prime}\left\{\left[\vec{J}\left(\vec{x}^{\prime}, t^{\prime}\right)\right]_{\mathrm{ret}} \times \frac{\hat{R}}{R^{2}}+\right. \\
& {\left.\left[\frac{\partial \vec{J}\left(\vec{x}^{\prime}, t^{\prime}\right)}{\partial t}\right]_{\mathrm{ret}} \times \frac{\hat{R}}{c R}\right\} } \tag{22}
\end{align*}
$$

3 Multipolar Radiation

3.1 Wave zone

- We now consider harmonic sources (the general case can be obtained by superposition of such sources):

$$
\begin{align*}
\rho(\vec{x}, t) & =\rho(\vec{x}) e^{-i \omega t} \tag{23}\\
\vec{J}(\vec{x}, t) & =\vec{J}(\vec{x}) e^{-i \omega t}
\end{align*}
$$

- We saw that in the presence of sources, the field $\vec{A}(\vec{x}, t)$ generated in vacuum, and without spatial boundaries, is

$$
\vec{A}(\vec{x}, t)=\frac{\mu_{\circ}}{4 \pi} \int d^{3} x^{\prime} \int d t^{\prime} \frac{\vec{J}\left(\vec{x}^{\prime}, t^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} \delta\left(t^{\prime}+\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}-t\right) .
$$

- For harmonic sources,

$$
\begin{equation*}
\vec{A}(\vec{x}, t)=e^{-i \omega t} \frac{\mu_{\circ}}{4 \pi} \int d^{3} x^{\prime} \frac{\vec{J}\left(\vec{x}^{\prime}\right) e^{i k\left|\vec{x}-\vec{x}^{\prime}\right|}}{\left|\vec{x}-\vec{x}^{\prime}\right|} \tag{24}
\end{equation*}
$$

with $k=\omega / c$

- We then obtain \vec{H} and \vec{E} with

$$
\begin{equation*}
\vec{H}=\frac{1}{\mu_{\circ}} \vec{\nabla} \times \vec{A}, \tag{25}
\end{equation*}
$$

and Faraday's law,

$$
\begin{equation*}
\vec{E}=\frac{i}{k} \sqrt{\frac{\mu_{\circ}}{\epsilon_{\circ}}} \vec{\nabla} \times \vec{H} \tag{26}
\end{equation*}
$$

- We now consider sources confined inside a region whose maximum extension is d, and that contains the origin. If $d \ll \lambda$, there are 3 regions of interest:
- The near zone, with $d<r \ll \lambda$, where $e^{i k\left|\vec{x}-\vec{x}^{\prime}\right|} \sim 1$ and we recover the static potentials except for harmonic oscilation, $\vec{A}(\vec{x}, t)=\vec{A}(\vec{x}) e^{-i \omega t}$.
- The intermediate zone with $d \ll r \sim \lambda$.
- The far zone, with $d \ll r$. \qquad
- In the far zone, with $d \ll r,\left|\vec{x}-\vec{x}^{\prime}\right| \approx r-\hat{n} \cdot \vec{x}^{\prime}$, where $\hat{n}=\vec{x} / r \Rightarrow$

$$
\begin{equation*}
\lim _{k r \rightarrow \infty} \vec{A}(\vec{x})=\frac{\mu_{\circ}}{4 \pi} \frac{e^{i k r}}{r} \int \vec{J}\left(\vec{x}^{\prime}\right) e^{-i k \hat{n} \cdot \vec{x}^{\prime}} d^{3} x^{\prime} \tag{27}
\end{equation*}
$$

- We see that $\vec{A}(x, t)=\vec{A}(\vec{x}) e^{-i \omega t}$ represents a spherical wave travelling outwards.
- In addition, (tarea) using Eqs 25 and 26 we also see that \vec{E} and \vec{H} also form spherical transverse waves (orthogonal to \hat{n}).
- The far zone thus corresponds to the radiation zone, also called wave zone.

3.2 Dipolar radiation

- We now use $d \ll \lambda$ to simplify \vec{A} in the wave zone. The integrand in Eq. 27 can be expanded in powers of $-i k \hat{n} \cdot \vec{x}^{\prime}$, using

$$
e^{-i k \hat{n} \cdot \vec{x}^{\prime}}=\sum_{n=0}^{\infty} \frac{(-i k)^{n}}{n!}\left(\hat{n} \cdot \vec{x}^{\prime}\right)^{n}
$$

- Therefore,

$$
\begin{equation*}
\vec{A}(\vec{x})=\frac{\mu_{\circ}}{4 \pi} \frac{e^{i k r}}{r} \sum_{n=0}^{\infty} \frac{(-i k)^{n}}{n!} \int \vec{J}\left(\vec{x}^{\prime}\right)\left(\hat{n} \cdot \vec{x}^{\prime}\right)^{n} d^{3} x^{\prime} \tag{28}
\end{equation*}
$$

- For $n=0$, which is the dominant term in the expansion in $k \hat{n} \cdot \vec{x}^{\prime}$, we get:

$$
\begin{equation*}
\vec{A}(\vec{x})=\frac{\mu_{\circ}}{4 \pi} \frac{e^{i k r}}{r} \int \vec{J}\left(\vec{x}^{\prime}\right) d^{3} x^{\prime} \tag{29}
\end{equation*}
$$

- Using the continuity equation, $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{J}=0$, we have $i \omega \rho=\vec{\nabla} \cdot \vec{J}$.
- Therefore (tarea):

$$
\begin{equation*}
\int \vec{J}\left(\vec{x}^{\prime}\right) d^{3} x^{\prime}=-\int \vec{x}^{\prime}\left(\vec{\nabla}^{\prime} \cdot \vec{J}\right) d^{3} x^{\prime}=-i \omega \int \vec{x}^{\prime} \rho\left(\vec{x}^{\prime}\right) d^{3} x^{\prime} \tag{30}
\end{equation*}
$$

- Finally,

$$
\begin{equation*}
\vec{A}(\vec{x})=\frac{-i \mu_{0} \omega}{4 \pi} \vec{p} \frac{e^{i k r}}{r}, \text { with } \underbrace{\vec{p}=\int \vec{x}^{\prime} \rho\left(\vec{x}^{\prime}\right) d^{3} x^{\prime}}_{\text {elecric dipole }} \tag{31}
\end{equation*}
$$

- We now calculate the \vec{E} and \vec{H} fields:

$$
\begin{align*}
& \vec{H}=\frac{c k^{2}}{4 \pi}\left(\hat{n} \times \vec{p} \frac{e^{i k r}}{r},\right. \tag{32}\\
& \vec{E}=\sqrt{\mu_{\circ}} \epsilon_{\circ} \vec{H} \times \hat{n},
\end{align*}
$$

where we see that electric dipole radiation is linearly polarized.

- The power emitted in direction \hat{n} can be written with $d P=r^{2} d \Omega \hat{n} \cdot \vec{S} \Rightarrow$,

$$
\begin{align*}
\frac{d P}{d \Omega} & =\frac{1}{2} \Re\left[r^{2} \hat{n} \cdot\left(\vec{E} \times \vec{H}^{*}\right)\right] \\
& =\frac{c^{2}}{32 \pi^{2}} \sqrt{\frac{\mu_{\circ}}{\epsilon_{\circ}}} k^{4}|\vec{p}|^{2} \sin ^{2}(\theta) \tag{33}
\end{align*}
$$

- The total power is

$$
\begin{equation*}
P=\frac{c^{2} k^{4}}{12 \pi}|\vec{p}|^{2} \tag{34}
\end{equation*}
$$

3.3 Magnetic dipole and electric quadrupole radiation

- The next term in the expansion of $e^{-i k \hat{n} \cdot \vec{x}^{\prime}}=\sum_{n=0}^{\infty} \frac{(-i k)^{n}}{n!}\left(\hat{n} \cdot \vec{x}^{\prime}\right)^{n}$ corresponds to $n=1$.
- Eq. 28 gives:

$$
\begin{equation*}
\vec{A}(\vec{x})=\frac{\mu_{\circ}}{4 \pi} \frac{e^{i k r}}{r}\left(\frac{1}{r}-i k\right) \int \vec{J}\left(\vec{x}^{\prime}\right)\left(\hat{n} \cdot \vec{x}^{\prime}\right) d^{3} x^{\prime} \tag{35}
\end{equation*}
$$

- This term originates magnetic dipole and electric quadrupole contributions. To see this, we separate the integrand:

$$
\begin{equation*}
\vec{J}\left(\vec{x}^{\prime}\right)\left(\hat{n} \cdot \vec{x}^{\prime}\right)=\underbrace{\frac{1}{2}\left[\left(\hat{n} \cdot \vec{x}^{\prime}\right) \vec{J}+(\hat{n} \cdot \vec{J}) \vec{x}^{\prime}\right]}_{A}+\underbrace{\frac{1}{2}\left(\vec{x}^{\prime} \times \vec{J}\right) \times \hat{n}}_{B} . \tag{36}
\end{equation*}
$$

- We first consider the contribution of part B and identify the magnetization $\overrightarrow{\mathcal{M}}$,

$$
\begin{equation*}
\overrightarrow{\mathcal{M}}=\frac{1}{2}(\vec{x} \times \vec{J}) \tag{37}
\end{equation*}
$$

- Then, for the B part,

$$
\begin{gather*}
\vec{A}(\vec{x})=\frac{i k \mu_{\circ}}{4 \pi}(\hat{n} \times \vec{m}) \frac{e^{i k r}}{r}\left(1-\frac{1}{i k r}\right), \text { with } \tag{38}\\
\vec{m}=\int \overrightarrow{\mathcal{M}} d^{3} x . \tag{39}
\end{gather*}
$$

- In the radiation zone, $k r \gg 1$, we obtain:

$$
\begin{align*}
\vec{A}(\vec{x}) & =\frac{i k \mu_{\circ}}{4 \pi}(\hat{n} \times \vec{m}) \frac{e^{i k r}}{r} \tag{40}\\
\vec{E}(\vec{x}) & =-\frac{k^{2}}{4 \pi} \sqrt{\frac{\mu_{\circ}}{\epsilon_{\circ}}}(\hat{n} \times \vec{m}) \frac{e^{i k r}}{r} \tag{41}\\
\vec{H}(\vec{x}) & =-\sqrt{\frac{\epsilon_{\circ}}{\mu_{\circ}}}(\vec{E} \times \hat{n}) \tag{42}
\end{align*}
$$

- This contribution is called magnetic dipole radiation.
- For the A part in the contribution from $n=1$, after standard handling we get:

$$
\begin{equation*}
A=\frac{i \omega}{2} \int \vec{x}^{\prime}\left(\hat{n} \cdot \vec{x}^{\prime}\right) \rho\left(\vec{x}^{\prime}\right) d^{3} x^{\prime} \tag{43}
\end{equation*}
$$

which represents order 2 moments of $\rho\left(\vec{x}^{\prime}\right)$, i.e. an electric quadrupole contribution, which we will not develop.

4 Radiation from a single charge

4.1 Liénard-Wiechert potentials

- Consider a particle with charge q and trajectory $\vec{r}(t)$, with velocity $\vec{u}(t)$.
- We can apply the retarded solution with source terms $\rho(\vec{x}, t)=q \delta(\vec{x}-\vec{r}(t))$, and $\vec{j}(\vec{x}, t)=\rho(\vec{x}, t) u(t)$, and thus obtain the resulting potentials (tarea):

$$
\begin{align*}
& \Phi(\vec{x}, t)=\frac{1}{4 \pi \epsilon_{\circ}}\left[\frac{q}{\left(1-\hat{n}\left(t^{\prime}\right) \cdot \vec{\beta}\left(t^{\prime}\right)\right) R\left(t^{\prime}\right)}\right]_{\mathrm{ret}} \tag{44}\\
& \vec{A}(\vec{x}, t)=\frac{\mu_{\circ}}{4 \pi}\left[\frac{q \vec{u}}{\left(1-\hat{n}\left(t^{\prime}\right) \cdot \vec{\beta}\left(t^{\prime}\right)\right) R\left(t^{\prime}\right)}\right]_{\mathrm{ret}} \tag{45}
\end{align*}
$$

where $\vec{R}\left(t^{\prime}\right)=\vec{x}-\vec{r}\left(t^{\prime}\right), R=|\vec{R}|, \hat{n}\left(t^{\prime}\right)=\frac{\vec{R}}{R}$, and $\vec{\beta}\left(t^{\prime}\right)=\frac{\vec{u}\left(t^{\prime}\right)}{c}$. These are the Liénard-Wiechert (L.-W.) potentials.

- We can also calculate the corresponding electromagnetic field (tarea):

$$
\begin{align*}
\vec{E}(\vec{x}, t)=\overbrace{\left[\frac{q}{4 \pi \epsilon_{\circ}} \frac{\left(1-\beta^{2}\right)(\hat{n}-\vec{\beta})}{R^{2}(1-\hat{n} \cdot \vec{\beta})^{3}}\right]_{\mathrm{ret}}}^{E_{\text {vel }}} \\
+\quad+\underbrace{\left[\frac{q}{4 \pi \epsilon_{\circ}} \frac{(\hat{n} \times((\hat{n}-\vec{\beta}) \times \dot{\vec{\beta}}))}{c R(1-\hat{n} \cdot \vec{\beta})^{3}}\right]_{\mathrm{ret}}}_{E_{\mathrm{rad}}} \tag{46}
\end{align*}
$$

with

$$
\begin{equation*}
\vec{B}(\vec{x}, t)=\frac{1}{c} \hat{n} \times \vec{E}(\vec{x}, t) . \tag{47}
\end{equation*}
$$

- We see that far away from the particle, the term labelled E_{rad} will eventually dominate. In fact, for a Fourier component, or for harmonic motion with $\vec{r}(t) \propto \exp (i \omega t)$, we find that (tarea)

$$
\begin{equation*}
\frac{E_{\mathrm{rad}}}{E_{\mathrm{vel}}}=\beta \frac{R}{\lambda}, \tag{48}
\end{equation*}
$$

and we see that the radiation term dominates if $R \gg \lambda / \beta$, sometimes also called the far zone.

4.2 Larmor Formula

- In the far zone, with $R \rightarrow \infty$, and in the Galilean limit $(\beta \ll 1)$, the power radiated per unit solid angle is (tarea):

$$
\begin{equation*}
\frac{d P}{d \Omega}=\frac{\mu_{\circ}}{16 \pi^{2}} q^{2} a^{2} \sin ^{2}(\theta) \tag{49}
\end{equation*}
$$

in which $a=|\dot{\vec{u}}|$ and θ is the angle between \hat{n} and \vec{a}. This is the Larmor formula.

- By applying Eq. 49 to the case of an harmonically oscilating charge with dipole $\vec{p}=q \vec{r}_{\circ} \exp (i \omega t)$, we can recover Eq. 33 (tarea).
- We therefore conclude that the wave zone as defined in Sec. 3.1 matches the Galilean limit (see the discussion on the dipole approximation in Sec. 3.3 of Rybicki \& Lightman).

4.3 Radiation reaction

- Let's consider a periodic sistem, such that its mechanical state is identical between times t_{1} and t_{2}.
- Still in the Galilean limit, the total energy radiated by the charge between t_{1} and t_{2} is

$$
\begin{equation*}
W=\frac{\mu_{\circ} q^{2}}{6 \pi c} \int_{t 1}^{t 2} a^{2} d t \tag{50}
\end{equation*}
$$

- Energy conservation requires the existence of a 'radiation reaction' force $F_{\text {rad }}$, such that W is extracted from the particle's kinetic energy,

$$
\begin{equation*}
\int_{t 1}^{t 2} d t \vec{F}_{\mathrm{rad}} \cdot \vec{u}=-W \tag{51}
\end{equation*}
$$

- One expression for the radiation reaction is the Abraham-Lorentz formula,

$$
\begin{equation*}
\vec{F}_{\mathrm{rad}}=\frac{\mu_{\circ} q^{2}}{6 \pi c} \dot{\vec{a}} \tag{52}
\end{equation*}
$$

We can confirm that Eq. 52 indeeds fullfills Eq. 51 (tarea).

5 Non-relativistic applications

- Thomson scattering (Rybicki \& Lightman Sec. 3.4)
- Harmonically bound particles (Rybicki \& Lightman Sec. 3.6)

