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Radiative Transitions
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1 Atomic/molecular coupling with radiation

1.1 Interaction with electromagnetic radiation

The coupling term between charged particles and the electromagnetic field, p⃗i ·
A⃗(k⃗·x⃗−wt)1, can be expressed through an expansion in k⃗·x⃗ as Hint = Hd+HM+HQ

(see Shu I,24), for which

Hd = −E⃗ · d⃗ (zeroth order)

where, for a molecule, d⃗ = d⃗el + d⃗nuc.

HM = −B⃗ · M⃗ (first order)

where the magnetic dipole moment M⃗ ∝ L⃗, and

HQ = −e

6
∇⃗E⃗ : (3x⃗x⃗− |x⃗|2I) (also order one).

In general HM > HQ. .3

1when substituting p⃗ → p⃗− q
c A⃗, and neglecting terms in A2 (OK for the ISM) see Shu I, 21
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1.2 Bound-bound transition probabilities and cross-sections

In time-dependent perturbation theory, the rate of radiative excitations i → f is:
dPif

dt
∝ N(ωif ) |⟨ϕf |Hint(ω)|ϕi⟩|2 .

In a cubic box where the ocupation number of state n⃗ is N, the density of states is
d3n⃗ = V d3ω/(2πc)3, with a volume V → ∞.

The absorption cross-section σif derives from Pif = Nf/Ni ∝ # of absorbed
photons 2:

Pif =

∫
d3n⃗

N(n⃗)

V
c t σif ⇒ dPif

dt
=

∫ ∞

0

σif c N(ω)
4πω2

(2π)3c2
dω

Identifying (see Shu I, 22, 23), we obtain

σif ∝ |⟨ϕf |Hint(w)|ϕi⟩|2 δ(ω − ωif ).
.4

1.3 Oscilator strength

For the electric dipole Hamiltonian, one gets

σif =
4π2

3ℏc

∣∣∣⟨ϕf |d⃗|ϕi⟩
∣∣∣2 δ(ω − ωif ),

which is usually expressed in terms of the oscilator strength fif ,

σif =
πe2

mec
fifδ(ν − νif ), con fif ≡ 4πme

3e2ℏ
νif

∣∣∣⟨ϕf |d⃗|ϕi⟩
∣∣∣2 .

For a single electron with position x⃗,

fif =
2me(ωif⟨f |x⃗|i⟩)2

3ℏwif

,

which is roughly the ratio between the vibrational potential energy of the electron
and that of the radiated photon. .5

1.4 Relationship with Einstein coeficients

The equation of detailed balance,

niBifJνif = nfAfi + nfBfiJνfi ,

and the LTE relationships,
nf

ni

=
gf
gi

exp(−hνif
kT

), and Jν = Bν(T ), lead to

Afi =
gi
gf

(2hν3/c2)Bif , Bfi =
c2

2hν3
Afi = (gi/gf )Bif .

.6

2note optically thin case: dNf = −ΓNfdt+
dPif

dt Nidt.
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• The rate of stimulated excitations is related to the oscilator strength using the
requirement

niBifJνif =

∫
dν

∫
dΩσifni

Jν
hν

=

∫
dν4πσifni

Jν
hν

(1)

• Therefore,

Bif =
4π2

hν

e2

mec
fif . (2)

.7

1.5 Natural line width

• We consider an atom in state i, subjected to radiation with frequency ωji,
corresponding to the energy interval with a final state f .

• The wave function of the target can be expanded as

|ϕ⟩ =
∑
j

cj|ϕj⟩. (3)

• Denoting Γ = Aji, then the probably amplitude for state f satisfies

d|cf |2

dt
= −Γ|cf |2. (4)

• In terms of the amplitude coefficients, Fermi’s golden rule should be modified
to account for spontaneous decay:

ċf = −iℏ−1⟨ϕf |Habs
α |ϕi⟩e(ωfi−ω)t − Γ

2
cf . (5)

.8

• We can solve Eq. 5 recognizing eΓt/2 as an integrating factor.
• After taking the modulus, in the limit t → ∞,

|cf (∞)|2 = ℏ−2

∣∣⟨ϕf |Habs
α |ϕi⟩

∣∣2
(ωfi − ω)2 + (Γ/2)2

. (6)

.9

1.6 Selection rules

• Electric dipole

– atoms: ∆l = 1, ∆m = 0.

– molecules:
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* vibrational-rotational transitions, or rovibrational, ∆J = ±1, ∆m =
0,∆v = ±1, allowed when Λ ̸= 0, ∆J = 0 3.

* electronic transitions, ∆Λ = 0,±1, ∆S = 0

* electronic-vibrational-rotational transitions (i.e. vibronic transitions):
∆J = 0,±1, ∆m = 0,±1 and ∆J ̸= 0 si Λ = ∆Λ = 0 and if
J = 0.

∆J =


+1 → R branch
0 → Q branch
−1 → P branch

• magnetic dipole, atoms: ∆l = 0, ∆m = 0,±1.
• electric quadrupole, atoms: ∆l = 0,±2, ∆m = 0,±1,±2, rotational transi-

tions in molecules ∆J = 0,±1,±2.
.10

CO
Subaru - IRCS + echelle & X-disperser (Goto et al. 2003, ApJ, 598, 1038)

.11

3Lambda doubling, two states ±Λ for each J . Example: hyperfine structure of the OH Λ doublet
at ∼1.7 GHz.
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1.7 Selection rules – H2

• In the case of H2 we have d⃗ = 0. Moreover the fundamental state is L⃗ = 0,
and S⃗ = 0, so that M⃗ = 0 and all low-energy transitions for H2 are quadrupo-
lar.

• Note that the antisymmetry of the nuclear wave function implies that the state
J = 1 (J odd) is triplet (Ortho H2, I = Snuclear = 1 ), while J = 0 (J even)
is singlet (Para H2, I = 0).

• In H2 the exclusion principle 4 forbids ∆J = 1, unless the transition involves a
change in spin state. The spin transitions can only occur through the exchange
of protons in collisions. Radiative transitions between spin states can occur,
but at a rate corresponding to the quadrupolar transitions in the Hamiltonian
of the deviations to the Born-Oppenheimer approximations.

.12

• In the ISM, Ortho and Para H2 are effectively different molecules. The
distinction extends to all molecules that contain H2 radicals.

• Rovibrational transitions between an upper level 1 and a lower level 2 are
written (v1−v2)O(J2) when J2−J1 = −2, (v1−v2)Q(J2) when J2−J1 = 0,
(v1 − v2)S(J2) when J2 − J1 = +2.

.13

2 Photoionization and radiative recombination

2.1 Photoionization

In time-dependent perturbation theory, the rate of transition between two states,
i → f , is:

dPif

dt
=

e2

hc3m2
e

2∑
α=1

∫
ωfi Nα(k⃗) |⟨ϕf |eik⃗·x⃗e⃗α · p⃗|ϕi⟩|2 dΩ,

where N (k⃗) is the occupation number of photons in the state corresponding to k⃗,
with frequency νfi.

In a photoionization process the final states f belong to the continuum. The
Born approximation neglects the influence of the ion on |ϕf⟩, and for a description
of the continuum we adopt a hard box normalization, with a size L → ∞. With i
corresponding to the fundamental state of the hydrogen atom, we obtain (Shu I, 23),

dPif

dt
∝ ω−3

fi N (ω), where N (ω) =

∫
dΩN (ω⃗).

.14

4the requirement that the wave function be antisymmetric
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The rate of absorption of ionizing photons with frequencies in the range [ν, ν+ν]

is dNf
dPif

dt
, where dNf is the number of free states in the corresponding range of

energies,

dNf =
V

2π3
4π k2

e dke,

where k⃗e refers to the free electron.
The cross-section of ionization is defined through

PifdNf = t σif (ω)c
N (n⃗)

V
4πn2dn, with

d3n⃗

V
=

d3ω

(2π)3c3
.

Identifying for σ(ν) we get
σ(ν) ∝ ν−3g(ν),

where g(ν) is a gaunt factor, g(ν) ∝ ν−1/2, in the Born approximation, which is
valid far from the ionization edge ν◦. gν ≈ 1 in the vicinity of ν◦, where the free-
particle approximation breaks down. .15

.16

2.2 Radiative recombination

Photoionization and its inverse process, radiative recombination, are related by
the Einstein - Milne relations (e.g. Osterbrock, A1; Shu I,75; Spitzer p104)). The
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detailed balance between photon absorptions with frequency ν and electron-ion re-
combinations with relative velocity v is

nX aν4π
Bν

hν
dν = nX+nevσ(v)f(v)dv + nX+neσ2(v)Bνvf(v)dv,

where 1
2
mv2+hνT = hν, and where f(v) is the Maxwellian integrated over angles.

We get (tarea) that σ2 = σ/(2hν3/c2), and

σ(v) =
g

g+

h2ν2

m2c2v2
aν ,

where g and g+ are the degeneracies of X and X+ in their fundamental levels. .17
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