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1.1-Maxwell Equations

• In the MKS system (or S.I.), the equations of
electrodynamics are, :

∇⃗ · D⃗ = ρ, (1)

∇⃗ · B⃗ = 0, (2)

∇⃗ × E⃗ = −∂B⃗
∂t

, (3)

∇⃗ × H⃗ = J⃗ +
∂D⃗
∂t

. (4)

• For linear media, D⃗ = ϵE⃗ and B⃗ = µH⃗.
• In vacuum, ϵ = ϵ◦ and µ = µ◦.
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1.2-Electrodynamic potentials

• Since ∇⃗ · B⃗ = 0, we have

B⃗ = ∇⃗ × A⃗. (5)

• For E⃗ , we use Eq. 5 and Eq. 3:

∇⃗ ×

(
E⃗ +

∂A⃗
∂t

)
︸ ︷︷ ︸

≡−∇⃗Φ

= 0, ⇒

E⃗ = −∇⃗ϕ− ∂A⃗
∂t

. (6)
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1.3-Wave equations

• We want to write equations that determine the
electrodynamic potentials A⃗ and Φ.

• Using the Maxwell Equations in vacuum to connect
directly with E⃗ and B⃗, we have

∇⃗ · E⃗ =
ρ

ϵ◦
⇒ ∇2Φ+

∂

∂t

(
∇⃗ · A⃗

)
=

ρ

ϵ◦
, (7)

∇⃗ × 1
µ◦

B⃗ = J⃗ +
1
ϵ◦

∂E⃗
∂t

⇒

∇2A⃗ − 1
c2

∂2A⃗
∂t2 − ∇⃗

(
∇⃗ · A⃗ +

1
c2

∂Φ

∂t

)
︸ ︷︷ ︸

term for the Lorentz condition

= −µ◦J⃗. (8)
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1.3-Wave equations
• If the term highlighted in Eq. 8 is null, which is called the

Lorentz Condition,

∇⃗ · A⃗ +
1
c2

∂Φ

∂t
= 0, (9)

then we recover the wave equation for the potentials:

∇2Φ− 1
c2

∂2Φ

∂t2 = − ρ

ϵ◦
, (10)

∇2A⃗ − 1
c2

∂2A⃗
∂t2 = −µ◦J⃗. (11)

• To fulfill the Lorentz condition, we use the freedom of
gauge:

A⃗ −→ A⃗′ = A⃗ + ∇⃗Λ, (12)

which leaves invariant B⃗ = ∇⃗ × A⃗.
• To also preserve E⃗ = −∇⃗Φ− ∂A⃗/∂t , it is necessary that

Φ −→ Φ′ = Φ− ∂Λ

∂t
. (13)
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1.3-Wave equations

• If A⃗ and Φ both fulfill the general potential equations
(Eqs. 8 and 7), but do not fulfill the Lorentz condition, then
we can search for Λ(x⃗ , t) so that A⃗′ and Φ′ do satisfy the
Lorentz condition.

• Injecting Eqs. 12 and 13 in Eq. 9, we reach an equation for
Λ(x⃗ , t):

∇⃗ · A⃗ +
1
c2

∂Φ

∂t
+∇2Λ− 1

c2
∂2Λ

∂t
= 0, (14)

which is essentially a wave equation with a source term,
i.e. exactly the type of equations that we will propose
solutions for.
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1.3-Wave equations

• Independently of the Lorentz condition, we can manipulate
the Maxwell equations to reach (tarea):

∇2E⃗ − 1
c2

∂2E⃗
∂t2 = − 1

ϵ◦

(
−∇⃗ρ− 1

c2
∂J⃗
∂t

)
, (15)

∇2B⃗ − 1
c2

∂2B⃗
∂t2 = −µ◦∇⃗ × J⃗, (16)

which are both wave equations with source terms.
• Away from the sources, i.e. in vacuum, both equations

become the homogeneous wave equation.
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1.4 Poynting’s theorem

• The power exerted by the electromagnetic force
F⃗ = qv⃗ × B⃗ + qE⃗ on a single charge q with velocity v⃗ is
v⃗ · F⃗ = qv⃗ · E⃗ .

• The power exerted on the charge density distribution ρ and
on the current density distribution J⃗ = ρv⃗ inside a volume
dV is thus

dP = J⃗ · E⃗ dV
• The total power exerted by the (E⃗ , B⃗) field on the charges

inside a volume V is

P =

∫
V

J⃗ · E⃗d3x . (17)
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1.4- Poynting’s theorem

• We want to connect P with the energy stored in the fields.
Using the Ampère-Maxwell equation (Eq. 4) we solve for J⃗,
and following standard handling (tarea),

P =

∫
V

[
−∇⃗ · (E⃗ × H⃗) + H⃗ · (∇⃗ × E⃗)− E⃗ · ∂D⃗

∂t

]
d3x .

(18)

• Now with the induction law, ∇⃗ × E⃗ = −∂B⃗
∂t (Eq. 3),

P =

∫
V

[
−∇⃗ · (E⃗ × H⃗)− H⃗ · ∂B⃗

∂t
− E⃗ · ∂D⃗

∂t

]
d3x . (19)
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1.4 Poynting’s theorem

• Remembering that for a linear medium
H⃗ · ∂B⃗

∂t = 1
2

∂
∂t (H⃗ · B⃗), and E⃗ · ∂D⃗

∂t = 1
2

∂
∂t (E⃗ · D⃗), we reach

P =

∫
V

J⃗ · E⃗d3x = −
∫
V

[
∂u
∂t

+ ∇⃗ · S⃗
]

d3x , (20)

where we recognize

u =
1
2

E⃗ · D⃗ +
1
2

B⃗ · H⃗, (21)

and
S⃗ = E⃗ × H⃗. (22)

• For any volume V, we conclude that

∂u
∂t

+ ∇⃗ · S⃗ = −J⃗ · E⃗ . (23)
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1.4 Poynting’s theorem

• In the same way as for energy conservation, Eq. 23, we
can also write the equation for the conservation of linear
momentum. Newton’s 2nd law for the variation of linear
momentum δp⃗mec inside a volume δV is:

d δp⃗mec

dt
= ρE⃗δV + ρv⃗ × B⃗δV. (24)

• In total,
dp⃗mec

dt
=

∫
V

d3x(ρE⃗ + ρv⃗ × B⃗). (25)
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1.4 Poynting’s theorem

• Using Maxwell’s equation to replace ρ and J⃗, we reach
(tarea):

d
dt

(p⃗mec + p⃗fields)|i =
∑

j

∫
V

d3x
∂Tij

∂xj
, (26)

with the following notations:

p⃗fields =

∫
ϵ◦(E⃗ × B⃗)d3x =

1
c2

∫
d3xS⃗, (27)

which we associate to the momentum in the fields since it
fulfills a similar role as p⃗mec, and

Tij = ϵ◦

[
EiEj + c2BiBj −

1
2

(
E⃗ · E⃗ + c2B⃗ · B⃗

)
δij

]
, (28)

which is the tensor of electromagnetic tensions.
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1.4- Poynting’s theorem

• For each component i the integrand of Eq. 26 (involving
Tij ) can be seen as a divergence, so

d
dt

(p⃗mec + p⃗fields)|i =
∮
S

∑
j

TijnjdA, (29)

where we recognize a flux integral over the surface
bounding the volume V.
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2.1 Spectral decomposition

• In the absence of sources, if we decompose

E⃗(x⃗ , t) =
1

2π

∫
dωE⃗(x⃗ , ω)eiwt , (30)

the Maxwell equations yield

(∇2 + µϵω2)

{
E⃗
B⃗

}
= 0. (31)

• If ϵ and µ are both real, the solutions are e±ikx , with
k =

√
µϵω

• We define the phase velocity vϕ = ω
k = c

n , where

n =
√

µϵ
µ◦ϵ◦

is the refraction index.

• In general,{
Ei
Bi

}
=

1
2π

∫
dω
{

Ei
Bi

}
e±i k⃗ ·⃗x−iwt , (32)
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2.1 Spectral decomposition

• We recognize d’Alembert’s solution for the wave equation,{
Ei
Bi

}
=

1
2π

∫
dω
{

Ei
Bi

}
e±ik(n̂·⃗x−vϕt), (33)

where each component i has a form
f (n̂ · x⃗ − vϕt) + g(n̂ · x⃗ + vϕt), and where n̂ is the direction
of propagation.

• Using Maxwell’s equations (tarea), n̂ · E⃗ = 0, n̂ · B⃗ = 0 and
B⃗ = n

c n̂ × E⃗ .
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2.1 Spectral decomposition

• For harmonic fields it is customary to use complex
notation (because of the spectral decomposition), so that
S⃗ = ℜ(E⃗)×ℜ(H⃗).

• In general for products of the type

ℜ(ae−iωt)ℜ(be−iωt) =
1
2
ℜ(a∗b + abe−2iωt), (34)

it is also customary to take time averages
⟨(· · · )⟩T = limT→∞

1
T

∫∞
0 (· · · )dt , and (tarea)

⟨ℜ(ae−iωt)ℜ(be−iωt)⟩ = 1
2
ℜ(a∗b). (35)
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2.1- Spectral decomposition

• We therefore have

⟨S⃗⟩ = 1
2

E⃗ × H⃗∗ =
1
2

√
ϵ

µ
|E|2n̂. (36)

And similarly,

⟨u⟩ = 1
4
(ϵE⃗ · E⃗∗ +

1
µ

B⃗ · B⃗∗) =
ϵ

2
|E|2. (37)

• Finally, ⟨S⃗⟩ = vϕun̂.
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2.2- Connection with radiative transfer

• We can now see that the concept of rays associated to the
radiative transfer equation, which describes the transport
of radiation in a straight line, is connected to the idea of a
plane monochromatic wave with direction of propagation
k⃗ .

• For a plane wave ⟨S⃗⟩ = vϕuk̂ is the flux of energy in
direction k̂ .

• In radiative transfer notation, the flux density in direction k◦
would be

Fν(x⃗) =
∫

dΩIν(k̂ , x⃗) k̂ · k̂◦. (38)

• Therefore the specific intensity field for a monochromatic
plane wave is

Iν(k̂) = ∥S⃗ν∥ δ(k̂ − k̂◦). (39)
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2.3 Polarization

• In summary, the electric field of a monochromatic wave
can be decomposed in two linearly polarized waves,

E⃗(x⃗ , t) = (ϵ̂1E1 + ϵ̂2E2)ei (⃗k ·⃗x−ωt), (40)

whose total describes, in general, an eliptically polarized
wave.

• With a change of vectorial basis to ϵ̂± = 1√
2
(ϵ̂1 ± i ϵ̂2), we

can also decompose E⃗ in two circularly polarized waves,

E⃗(x⃗ , t) = (ϵ̂+E+ + ϵ̂−E−)ei (⃗k ·⃗x−ωt). (41)
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2.3 Polarization
• With the notation

E1 = E1eiϕ1 , E2 = E2eiϕ2 ,
E+ = E+eiϕ+ , E− = E−eiϕ− ,

we have
linear polarization : ϕ2 − ϕ1 = 0.
circular polarization : |ϕ2 − ϕ1| = π

2 and E2 = E1.

the general case is eliptical, with : tan(χ) = E1
E2

cos(ϕ1)
cos(ϕ2)

.
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2.3 Polarization

• It is customary to use the Stokes parameters to
characterize the polarization state of monochromatic
light:

I = E1E∗
1 + E2E∗

2 = E2
1 + E2

2 ,
Q = E1E∗

1 − E2E∗
2 = E2

1 − E2
2 ,

U = E1E∗
2 − E2E∗

1 = 2E1E2 cos(ϕ2 − ϕ1),
V = i(E1E∗

2 − E2E∗
1 ) = 2E1E2 sin(ϕ2 − ϕ1).

(42)

• We see that Stokes I (the total “radiance”) is I ∝ |S⃗|, Q and
U measure linear polarization, while V measure circular
polarization. In order to make this obvious it is best to use
mental experiments with polarizors that select specific
types of polarization (see class).

• For a strictly monochromatic wave, it follows that

I2 = Q2 + U2 + V 2. (43)



Electromagnetic waves
Maxwell Equations

Electrodynamic potentials

Wave equations

Poynting’s theorem

Wave propagation in
vacuum
Spectral decomposition

Connection with radiative
transfer

Polarization

Quasi-monochromatic
waves

Wave propagation in a
medium
Constitutive equations

Kramers-Kronig relations

Monochromatic waves

.32

Outline

1 Electromagnetic waves
Maxwell Equations
Electrodynamic potentials
Wave equations
Poynting’s theorem

2 Wave propagation in vacuum
Spectral decomposition
Connection with radiative transfer
Polarization
Quasi-monochromatic waves

3 Wave propagation in a medium
Constitutive equations
Kramers-Kronig relations
Monochromatic waves



Electromagnetic waves
Maxwell Equations

Electrodynamic potentials

Wave equations

Poynting’s theorem

Wave propagation in
vacuum
Spectral decomposition

Connection with radiative
transfer

Polarization

Quasi-monochromatic
waves

Wave propagation in a
medium
Constitutive equations

Kramers-Kronig relations

Monochromatic waves

.33

2.4 Quasi-monochromatic waves

• In order to obtain E⃗(x⃗ , ω), we need to know E⃗(t) for all t ,
since

E⃗(x⃗ , ω) =
∫ +∞

−∞
E⃗(x⃗ , t)eiωtdt . (44)

• So in practice, we treat E1 and E2 as random variables, i.e.
for a wave in vacuum, described by Eq. 40,

E⃗(x⃗ , t) = (E1(t)ê1 + E2(t)ê2)ei (⃗k ·⃗x−ωt). (45)

Alternatively we can also replace the time dependence in
Eq. 45 with a probability density, which itself may depend
on time.

• To fix ideas, let’s remember that ∆t∆ω = 1 for Gaussian
spectra, where ∆t is the ‘coherence time’, and ∆ω is the
‘bandwidth’ of the quasi-monochromatic wave.
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2.4 Quasi-monochromatic waves

• In order to measure the Stokes parameters, we need
averages of the kind

⟨E1E∗
2 ⟩ = lim

T→∞

1
T

∫
dtE1(t)E∗

2 (t)dt . (46)

• We therefore have

⟨Q2⟩+ ⟨U2⟩+ ⟨V 2⟩ = ⟨I2⟩−
4(⟨E2

1 ⟩⟨E2
2 ⟩ − ⟨E1E2ei(ϕ2−ϕ1)⟩⟨E1E2e−i(ϕ2−ϕ1)⟩

= ⟨I2⟩−
4(⟨E2

1 ⟩⟨E2
2 ⟩− ⟨E2

1E2
2 cos2(ϕ2 −ϕ1)⟩+ ⟨E2

1E2
2 sin2(ϕ2 −ϕ1)⟩),

(47)

and, by Schwartz’ inequality (⟨ab⟩ ≥ ⟨a⟩⟨b⟩),

I2 ≥ Q2 + U2 + V 2. (48)
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2.4- Quasi-monochromatic waves

• For a wave with a single and constant eliptical polarization
state, then the equality holds in Eq. 48.

• On the other hand, for a completely unpolarized wave,
Q = U = V = 0.

• The Stokes parameters are additive. Proof: consider a
sum of N different waves

E⃗ =
N∑

k=1

E⃗k =
∑

(ϵ̂1Ek
1 + ϵ̂2Ek

2 )e
i (⃗k ·⃗x−ωt). (49)

Because each Ek
i (t) is statistically independent,

⟨Ek
i E l∗

j ⟩ = δkl⟨Ek
i Ek∗

j ⟩, and
I
Q
U
V

 =
∑

k


Ik
Qk
Uk
Vk

 . (50)
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2.4- Quasi-monochromatic waves

• We can therefore decompose an arbitrary set of Stokes
parameters in


I
Q
U
V

 =

unpol︷ ︸︸ ︷
I −

√
Q2 + U2 + V 2

0
0
0

+

pol︷ ︸︸ ︷
√

Q2 + U2 + V 2

Q
U
V

 . (51)

• The first term ‘unpol’ is completely unpolarized since
Q = U = V = 0, while the second term ‘pol’ is completely
polarized since it satisfies I2 = Q2 + U2 + V 2 (Eq. 43).
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2.4- Quasi-monochromatic waves

• The total polarized intensity of a wave train is thus be
Ipol =

√
Q2 + U2 + V 2.

• We define the polarization fraction as

Π =
Ipol

I
. (52)
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3.1 Constitutive equations

• Each monochromatic component of the field E⃗ , B⃗ must
fulfill the following constitutive relations:

P⃗ = ϵ◦χE⃗ −→ P⃗(ω) = ϵ◦χ(ω)E⃗(ω),

B⃗ = µH⃗ −→ B⃗(ω) = µ(ω)H⃗(ω),

J⃗ = σE⃗ −→ J⃗(ω) = σ(ω)E⃗(ω),

(53)

in which we have added Ohm’s law.
• We note that χ(−ω) = χ∗(ω), so that

χ(t) = 1
2π

∫
dωχ(ω) exp(−iωt) be real (and similarly for µ

and σ).
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3.1 Constitutive equations

• The Fourier convolution theorem states that if
X (ω) = Y (ω)Z (ω), then

X (t) =
∫ ∞

−∞
Y (t − t ′)Z (t ′)dt ′, (54)

where Y (t) = 1
2π

∫
dωY (ω) exp(−iωt), etc..

• Applying the convolution theorem to χ (for example),

P(t) =
∫ ∞

−∞
G(t − t ′)E(t ′)dt ′, with

G(t) =
1

2π

∫ ∞

−∞
ϵ◦χ(ω)e−iωtdω. (55)



Electromagnetic waves
Maxwell Equations

Electrodynamic potentials

Wave equations

Poynting’s theorem

Wave propagation in
vacuum
Spectral decomposition

Connection with radiative
transfer

Polarization

Quasi-monochromatic
waves

Wave propagation in a
medium
Constitutive equations

Kramers-Kronig relations

Monochromatic waves

.42

3.1 Constitutive equations
• We see that P(t) depends on the history of E⃗(t ′), which

bears physical sense only in the past, for t ′ < t , so
G(t) = 0 if t < 0. We will use this property in the next
section.

• This time we write the monochromatic wave as

E⃗(t) = A⃗ cos(ω◦t) + B⃗ sin(ω◦t) = ℜ(E⃗c(t)), (56)

with E⃗c = (A⃗ − i B⃗)(cos(ω◦t) + i sin(ω◦t)).
• In the Fourier plane,

E(ω) = π [(A + iB)δ(ω − ω◦) + (A − iB)δ(ω + ω◦)] . (57)

• We can evaluate

P(t) =
1

2π

∫ ∞

−∞
ϵ◦χ(ω)E(ω)e−iωtdω

= ℜ
[ϵ◦

2
(A − iB)χ(ω◦)e−iω◦t

]
= ℜ[Pc(t)], (58)

using χ(−ω) = χ∗(ω), and where Pc = ϵ◦χ(ω◦)Ec(t).
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3.1 Constitutive equations

• With the spectral decomposition of the constitutive
relations we can rewrite the Maxwell equations in their
harmonic versions. In the absence of free charges,

∇⃗ · E⃗(ω) = 0, ∇⃗ × E⃗(ω) = −iωµ(ω)H⃗(ω),

∇⃗ · H⃗(ω) = 0, ∇⃗ × H⃗(ω) = −iωϵ(ω)E⃗(ω),
(59)

where (tarea)

ϵ(ω) = ϵ◦(1 + χ(ω)) + i
σ(ω)

ω
. (60)

• Note that both susceptibility and conductivity contribute to
the imaginary part of ϵ :

ℑ(ϵ) = ϵ◦ℑ(χ) + ℜ(σ/ω). (61)
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3.2 Kramers-Kronig relations

• From physical considerations we can anticipate that the
induced P(t) depends on the history of the applied field, or

P⃗(t) =
∫ ∞

−∞
G(t , t ′)E⃗(t ′)dt ′ (62)

(note difference with Eq. 55).
• Let’s assume that E⃗ = δ(t − t◦)E⃗◦. Then P⃗(t) = G(t , t◦)E⃗◦,

and G is the polarization resulting from a delta-unitary
electric field.

• If the properties of the medium do not change in time,
G(t , t◦) = G(t − t◦), and we recover Eq. 55.

• Causality requires that G(τ) = 0 if τ < 0, so

ϵ◦χ(ω) =

∫ ∞

0
dtG(t)eiωt . (63)
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3.2 Kramers-Kronig relations
• We extend Eq. 63 to the complex plane with ω̃ = ωR + iωI ,

where ωI > 0.

ϵ◦χ(ω̃) =

∫ ∞

0
dtG(t)eiω̃t . (64)

• If
∫∞

0 |G(t)|dt converges, so does
∫∞

0 G(t)eiω̃tdt , and χ(ω̃)
is analytical in the superior C plane (ωI > 0).

• Therefore χ(ω̃)/(ω̃ − ω) is analytical except in the pole
ω̃ = ω, where ω is a point along the real axis.

• We can apply the Kramers-Kronig theorem (proof: see
Bohren & Huffman, Sec. 2.3.2), which gives

iπχ(ω) = P
∫ ∞

−∞

χ(Ω)

Ω + ω
dΩ, (65)

where P indicates Cauchy’s ‘principal value’

P
∫ ∞

−∞

χ(Ω)

Ω + ω
dΩ =

lim
a→0

(∫ ω−a

−∞

χ(Ω)

Ω + ω
dΩ+

∫ ∞

ω+a

χ(Ω)

Ω + ω
dΩ
)
. (66)
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3.2 Kramers-Kronig relations

• Using that χ∗(Ω) = χ(−Ω) we can restrict the integration
to Ω > 0, and use χ = χR + iχI to rewrite Eq. 66:

χR(ω) =
2
π

P
∫ ∞

0

ΩχI(Ω)

Ω2 − ω2 dΩ, (67)

χI(ω) = −2ω
π

P
∫ ∞

0

χR(Ω)

Ω2 − ω2 dΩ. (68)

• Similar relationships exists for µ y σ.
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3.3 Monochromatic waves

• We now extend the monochromatic waves to
homogeneous media. We inject

E⃗c = E⃗◦ei (⃗k ·⃗x−ωt), and H⃗c = H⃗◦ei (⃗k ·⃗x−ωt), (69)

into Maxwell’s equations.
• Allowing for k⃗ ∈ C, k⃗ = (kR + ikI)︸ ︷︷ ︸

k

ê,

E⃗c = E⃗◦e−k⃗I ·⃗xei(k⃗R ·⃗x−ωt). (70)

• The harmonic Maxwell equations (Eqs. 59) yield:

k⃗ · E⃗◦ = 0 k⃗ · H⃗◦(ω) = 0
k⃗ × E⃗◦ = ωµH⃗◦, k⃗ × H⃗◦ = −ωϵE⃗◦.

(71)

• And with k⃗ · k⃗ = ω2ϵµ ,

k2
R − k2

I + 2i k⃗I · k⃗R = ω2ϵµ (tarea). (72)
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3.3 Monochromatic waves

• For a homogeneous wave (no free charges),

k⃗ = (kR + ikI)︸ ︷︷ ︸
k

ê,

and k = ωN/c, where N is the complex refractive index,

N = c
√
ϵµ =

√
ϵµ

ϵ◦µ◦
.

• We set N = n + iκ, where n and κ are both ∈ R+.
• Eq. 70 gives:

E⃗c = E⃗◦e− 2π
λ κzei( 2πnz

λ −iωt). (73)

• ⇒ the imaginary part of N corresponds to absorption.
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3.3 Monochromatic waves

• We can apply the Kramers-Kronig relations to (N(ω)− 1)
(the −1 is motivated by limω→∞ N(ω) = 1):

n(ω)− 1 = 2
πP
∫∞

0
Ωκ(Ω)
Ω2−ω2 dΩ

κ(ω) = − 2ω
π P

∫∞
0

n(Ω)
Ω2−ω2 dΩ

(74)

• We see that the absorption in a medium is also related to
the real refractive index.
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