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1.1-Maxwell Equations

¢ |n the MKS system (or S.1.), the equations of
electrodynamics are, :

P
= 0,
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e For linear media, D = ¢E and B = pFl.
® |Invacuum, e = ¢, and p = po.
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1.2-Electrodynamic potentials

e Since V- B = 0, we have

B=V x A.

e For E, we use Eqg.5 and Eq. 3:

V x

L 9A
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1.3-Wave equations

e We want to write equations that determine the
electrodynamic potentials A and ¢.

¢ Using the Maxwell Equations in vacuum to connect
directly with E and B, we have

VE=L 5 vior U (v.A)="2

€o ot 607
1 - - 10E
VXIB_J—i_gﬁ
- 1PA - (o - 100 -
2 —_— e . —_— = —
VEA- 5w~V (v At ar) f1od.

term for the Lorentz condition
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1.3-Wave equations

e [f the term highlighted in Eq. 8 is null, which is called the
Lorentz Condition,

= > 100
A —2- =0 9
VA+ 55 =0 (9)
then we recover the wave equation for the potentials:
1 62 p
2
__ - - _F 1
Ve c? ot? € (10)
S 1 02A -
2A— 55— = —pod. 11
VA c2 ot2 Hod (1)
¢ To fulfill the Lorentz condition, we use the freedom of
gauge:
A— A=A+ VA, (12)

which leaves invariant B = V x A.
e To also preserve E = —Vo — 0A/0t, it is necessary that

;o OA
® =0 (13)
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1.3-Wave equations

Electromagnetic waves

e If Aand ¢ both fulfill the general potential equations Eeomoranipamis
(Egs. 8 and 7), but do not fulfill the Lorentz condition, then m
we can search for A(X, t) so that A’ and &’ do satisfy the Wave propagaton i
Lorentz condition. Specialdecomposiien

Connection with radiative

® Injecting Eqgs. 12 and 13 in Eq. 9, we reach an equation for ==

Polarization

/\(/?, t) . S:j::monochromauc
82 Wave propagation in a
S - 1 a(D 1 A medium
. — 2 —_ — Constitutive equations
VAt c2 Ot + VoA c2 Ot - O’ (1 4) Kramers-Kronig relations

Monochromatic waves

which is essentially a wave equation with a source term,
i.e. exactly the type of equations that we will propose
solutions for.



1.3-Wave equations

Electromagnetic waves
Maxwell Equations
Electrodynamic potentials

¢ Independently of the Lorentz condition, we can manipulate

the Maxwell equations to reach (tarea): RpEC
Wave propagation in
_ . vacuum
. 1 82 E 1 . 1 8 J Speclral.deco.nwusll.mr]
V2 E — = - pr el I (1 5) lcr::::'::ucn with radiative
C 8 t € o C 8 t Polarization
Quasi-monochromatic
N 1 628 N . waves . .
VZB _ ? W —_ _Mov x J’ (1 6) g:;ﬁjfnropagatlon ina

Constitutive equations
Kramers-Kronig relations

which are both wave equations with source terms. Menochromati waves

e Away from the sources, i.e. in vacuum, both equations
become the homogeneous wave equation.
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1.4 Poynting’s theorem

® The power ¢ exerted by the electromagnetic force

F= qv x B+ qE on a single charge g with velocity v is
V.F=qv-E.

° The power exerted on the charge density distribution p and

on the current density distribution J = v inside a volume
dV is thus

dP = J-Edy

—

® The total power exerted by the (E, B) field on the charges
inside a volume V' is

P:/J.E'cﬁx. (17)
%
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1.4- Poynting’s theorem

e We want to connect P with the energy stored in the fields.
Using the Ampére-Maxwell equation (Eqg. 4) we solve for J,
and following standard handling (tarea),

P=[ |-V ExRy+A xE)-E | x
%
(18)
e Now with the induction law, V x E= —%E;’ (Eq. 3),
(e 2 i o 0B 2 9D 4
P_/v -V ( ><H)—H~§—E~W a’x.  (19)
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1.4 Poynting’s theorem

° Remembering that for a linear medium
H.98 —12(H.B),and E- % — 1 2.(E.

Electromagnetic waves

), we reach gy
Electrodynamic potentials

28[

Wave equations

D
- o | Poyntings theorem
P: / J Ed3X - —/ |: :l dSX, (20) Wave propagation in
v v

vacuum
Spectral decomposition
. Connection with radiative
where we recognize transter
Polarization

Quasi-monochromatic
waves

" -

u= E . D + B . Wave propagation in a
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a n d . 5 N Monochromatic waves
S—ExH. (22)

e For any volume V, we conclude that
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1.4 Poynting’s theorem

® |n the same way as for energy conservation, Eq. 23, we
can also write the equation for the conservation of linear
momentum. Newton’s 2nd law for the variation of linear
momentum 6. inside a volume 6V is:

d 5,6mec

= pESV + pV x BsV. (24)

® |n total,

OPmec _ / d*x(pE + pV x B). (25)
dt v
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1.4 Poynting’s theorem

¢ Using Maxwell’s equation to replace p and J, we reach
(tarea):

d — — _ 3 87-11
gi(Po + o)l =3 [l e
with the following notations:

Priclas = /EO(E x B) /dSXS (27)

which we associate to the momentum in the fields since it
fulfills a similar role as Pyec, and

which is the tensor of electromagnetic tensions.
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1.4- Poynting’s theorem

® For each component i the integrand of Eq. 26 (involving
Tj) can be seen as a divergence, so

d
dt (pmec + pﬁelds ‘I — f Z T/]n/d.A (29)

where we recognize a flux integral over the surface
bounding the volume V.
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2.1 Spectral decomposition

¢ |n the absence of sources, if we decompose

mu

(X, 1) = 217 / dwE(X,w)e™, (30)

the Maxwell equations yield

-

(V2 + pew?) g =0. (31)

e If e and p are both real, the solutions are e***, with

k = /lew

* We define the phase velocity v, = % = £, where

n=, /H“—E is the refraction index.
* |n general,

Ei 1 1 Ei | pikg—iwt
(E1-1 faf 8 oirm
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2.1 Spectral decomposition

* We recognize d’Alembert’s solution for the wave equation,

E\_ 1 Ei | jtik(T—vyt)
(8)-2fe {5} w

where each component j has a form
f(h- X — vet) + g(h- X + vut), and where h is the direction
of propagation.

* Using Maxwell's equations (tarea), fi- £ = 0, fi- B =0 and
B=1nx¢&.
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2.1 Spectral decomposition

¢ For harmonic fields it is customary to use complex
notation (because of the spectral decomposition), so that
S =R(E) x R(H).

¢ |In general for products of the type

R(ae~“")R(be ") = 13%(a*b + abe™2h),

5 (34)

it is also customary to take time averages

(- Nr=limre 1 [;7(--)at, and (tarea)
(R(ae— = R(be1)) = %%(a*b). (35)
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2.1- Spectral decomposition

® We therefore have

= 1—' —**_1 € 24
<$_2EXH_2¢Mﬂn

And similarly,

e Finally, (S) = v,uh.
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2.2- Connection with radiative transfer

We can now see that the concept of rays associated to the
radiative transfer equation, which describes the transport
of radiation in a straight line, is connected to the idea of a
plane monochromatic wave with direction of propagation
K.

For a plane wave (S) = v, uk is the flux of energy in
direction k.

In radiative transfer notation, the flux density in direction k,
would be

= /dQ/V(R,)?)R - k. (38)

Therefore the specific intensity field for a monochromatic
plane wave is

(k) = 1S, ]| 6(k — ko). (39)
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2.3 Polarization

® In summary, the electric field of a monochromatic wave
can be decomposed in two linearly polarized waves,

E(X, 1) = (&1E; + e2Bp) k3=t (40)

whose total describes, in general, an eliptically polarized
wave.

e With a change of vectorial basis to ¢, = %(@1 + &), we
can also decompose E in two circularly polarized waves,

E(X 1) = (6.E, + ¢ E_)eKF-wn, (41)
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2.3 Polarization
e With the notation

Ei = & e"¢1 E =& e"¢2 ;
L) L) Electromagnetic waves
EJr = g+ el¢+, E, = 57 eld)’, Maxwell Equations

Electrodynamic potentials
Wave equations

we have Poynting's theorem

Wave propagation in

linear polarization : ¢ — ¢1 = 0. vacuum

Spectral decomposition

circular polarization : [p2 — ¢1| = 5 and & = &;. Comnecton v e
the general case is eliptical, with : tan(y) = £ <(21)

=z, . Quasi-monochromatic
&2 cos(¢z) S

Py Wave propagation in a
€r4 . medium
-
E— -’ Constitutive equations
E . Kramers-Kronig relations
* Monochromatic waves
-’
-
-
R X
-
-
¢

¥
3




2.3 Polarization

e |t is customary to use the Stokes parameters to

characterize the polarization state of monochromatic ooromasneno waes
li g ht: Electrodynamic potentials
Wave equations
Poynting's theorem
= E1 E1* —|— E2E2* — 512 + (‘:22, Wave propagation in
Q= EEf-EE = 812 — 522, vacuum
42 Speclral.deco.mpcsll.mr]
U= EE-BE = 28&cos(do—o1), P2 | o
= i — = i _ | Polarizaon
= I(E1E; — BoEf) = 2&&sin(g2 — ¢1).
e We see that Stokes | (the total “radiance”) is / « |S|, Qand  medum oo
U measure linear polarization, while V measure circular e s
polarization. In order to make this obvious it is best to use T S

mental experiments with polarizors that select specific
types of polarization (see class).

¢ For a strictly monochromatic wave, it follows that

2= QP+ P+ V2 (43)
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2.4 Quasi-monochromatic waves

¢ |n order to obtain I::()‘(', w), we need to know E(t) for all t,
since o
E(X,w) = / E(X,t)e“!dt. (44)
e So in practice, we treat E; and E, as random variables, i.e.
for a wave in vacuum, described by Eq. 40,

E(X. 1) = (E1(1)& + Ea(t)&)eKF=w1), (45)

Alternatively we can also replace the time dependence in
Eq. 45 with a probability density, which itself may depend
on time.

¢ To fix ideas, let's remember that AtAw = 1 for Gaussian
spectra, where At is the ‘coherence time’, and Aw is the
‘bandwidth’ of the quasi-monochromatic wave.
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2.4 Quasi-monochromatic waves

¢ |n order to measure the Stokes parameters, we need
averages of the kind

(E1E5) = TILm lT dtE((t)E5 (t)dt. (46)
e We therefore have
(@) + (UP) + (VB) = (P)-
A((E2)(E3) — (16262 91)) (£, 0 (92 91))
= (P)-
4((E7)(E5) — (E3E5 cos? (o — d1)) + (EFE5 sin®(d2 — ¢1))),
and, by Schwartz’ inequality ((ab) > (a)(b)),

P>Q®+ U?+ V2 (48)
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2.4- Quasi-monochromatic waves

® For a wave with a single and constant eliptical polarization
state, then the equality holds in Eq. 48.

¢ On the other hand, for a completely unpolarized wave,
Q=U=V=0.

® The Stokes parameters are additive. Proof: consider a
sum of N different waves

Because each EX(t) is statistically independent,
(

<ElkE]I*> = du EkEjk*>, and

1

/

Q Q

U => U: . (50)
v k
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2.4- Quasi-monochromatic waves

¢ We can therefore decompose an arbitrary set of Stokes
parameters in

unpol

/ |- V@E LR+ V2

Q| 0

u |~ 0 +

4 0
pol

V@t 5 V2

J . (51)
4

e The first term ‘unpol’ is completely unpolarized since

Q = U =V =0, while the second term ‘pol’ is completely

polarized since it satisfies 2 = Q? + U? + V2 (Eq. 43).
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2.4- Quasi-monochromatic waves

® The total polarized intensity of a wave train is thus be
ol = /Q2 + U2 + V2.

¢ We define the polarization fraction as

Ipo]
M= —.
/

(52)
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3.1 Constitutive equations

e Each monochromatic component of the field E‘, B must
fulfill the following constitutive relations:

.’5;: eoxﬂé — :(w) = eox(wLE(w),
BoyH — B =pwHw). (59
J=cE — J(w)=oc(w)E(w),

in which we have added Ohm’s law.

e We note that x(—w) = x*(w), so that
x(t) = 5= [ dwx(w) exp(—iwt) be real (and similarly for 4
and o).
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3.1 Constitutive equations

® The Fourier convolution theorem states that if
X(w) = Y(w)Z(w), then

:/wyu—wawmx

where Y(t) = 2= [ dwY(w) exp(—iwt), etc..

* Applying the convolu’uon theorem to x (for example),

:/ G(t — t)E()dt', with

G(t) =

1 > —iwt
E~/—oo eox(w)e " dw.

(55)
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3.1 Constitutive equations

¢ We see that P(t) depends on the history of E‘(t’), which
bears physical sense only in the past, for t’ < t, so
G(t) = 0if t < 0. We will use this property in the next
section.

® This time we write the monochromatic wave as

E(t) = Acos(wst) + Bsin(wot) = R(Eo(t)),  (56)
with E; = (A — iB)(cos(wot) + isin(wt)).
¢ |n the Fourier plane,
E(w) =7 [(A+iB)d(w — wo) + (A= iB)é(w + wo)] . (57)
¢ We can evaluate
P(t) = 217 /: eox(w)E(w)e™ ™ dw
S [%"(A - /B)X(wo)e—w} = R[P(1)], (58)

using x(—w) = x*(w), and where P; = e, x(wo ) Ec(f).
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3.1 Constitutive equations

¢ With the spectral decomposition of the constitutive

Electromagnetic waves
relations we can rewrite the Maxwell equations in their o s
harmonic versions. In the absence of free charges, e sasars

— - — — ., — Wave propagation in
J— J— vacuum
VoE@w) =0, VxE(w)=—lwu(@Hw), g ..
V- H(UJ) — 0, V X H( ) — —iCUG(UJ)E(W), Connecton with adlie
Polarization
Quasi—m‘onochromauc
where (tarea)

waves
Wave propagation in a

e(w) = eo(1 4 x(W)) + i@. (60) ot

Kramers-Kronig relations
Monochromatic waves

¢ Note that both susceptibility and conductivity contribute to
the imaginary part of € :

S(e) = €3(x) + R(o/w). (61)
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3.2 Kramers-Kronig relations

* From physical considerations we can anticipate that the . _
induced P(t) depends on the history of the applied field, of et

Electrodynamic potentials
Wave equations

/ G t t, t,)dt, (62) Poyming‘smeorerf\ '

Wave propagation in
vacuum
Spectral decomposition
(note difference with Eq. 55). e eININEEES
= - — - Polarization

e Let's assume that E = §(f — &,)E,. Then P(t) = G(t, t,)E., Quasimonchroma
and G is the polarization resulting from a delta-unitary R

eleCtrIC fleld' rzeo(:i:mrrlive equations.

e [f the properties of the medium do not change in time, e

G(t,t,) = G(t — 1,), and we recover Eq. 55.
e Causality requires that G(7) = 0if 7 < 0, so

eox(w / atG(t)e™". (63)



3.2 Kramers-Kronig relations
e We extend Eq. 63 to the complex plane with & = wgr + iwy,
where w; > 0.

EoX(@ / dtG(t)e™". (64)

* If [;7 |G(t)|dt converges, so does [, G(t)e'“!dlt, and x(&)
is analytical in the superior C plane (w, > 0)

® Therefore x(©)/(& — w) is analytical except in the pole
& = w, where w is a point along the real axis.

® We can apply the Kramers-Kronig theorem (proof: see
Bohren & Huffman, Sec. 2.3.2), which gives

itx(w) = F’/ Q dQ
where P indicates Cauchy’s ‘principal value’
< x(Q) o
P/_Oo QerdQ =
w—a o0
lim (/ () dQ+/ X(Q) dQ). (66)

a—0\J_ o Q4w 1224w

(65)
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3.2 Kramers-Kronig relations

® Using that x*(Q2) = x(—) we can restrict the integration
to Q > 0, and use x = xg + iy to rewrite Eq. 66:

(@) = 2P / ol g, 7)

xi(w) = P / ( —d2 (68)

e Similar relationships exists for u y o.
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Outline

@ Wave propagation in a medium

Monochromatic waves
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3.3 Monochromatic waves

¢ We now extend the monochromatic waves to
homogeneous media. We inject

E, = E @K%= and H, = H,ek*—wD)
into Maxwell’s equations.
e Allowing for k € C, k = (kg + ik)) &,
N——

k

EC _ EO e—k,-)?ei(k})?—wt).

¢ The harmonic Maxwell equations (Egs. 59) yield:

k-E,=0 K-Hy(w)=0
/_('XE_;:UJ/L_’O, EXHO:—weEO

e And with k - kK = w2ep,

k3 — k? + 2ik; - kg = w?ep (tarea).

(69)

(71)
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3.3 Monochromatic waves

® For a homogeneous wave (no free charges),

Electromagnetic waves
Maxwell Equations
N . R Electrodynamic potentials
— Wave equations
k = (kR + Ikl ) e, Poyn(in:‘s theorem
k Wave propagation in
vacuum
. . . Speciral decomposition
and k = wN/c, where N is the complex refractive index,

Connection with radiative
transfer

Polarization

Quasi-monochromatic
=cC /7 waves

€ Wave propagation in a
OM © medium

Constitutive equations
* We set N = n+ ix, where nand « are both € R". e e
e Eq.70 gives:

EC — Eoe—Tnzel(z”"z iwt).

e = the imaginary part of N corresponds to absorption.



3.3 Monochromatic waves

e We can apply the Kramers-Kronig relations to (N(w) — 1)
(the —1 is motivated by lim,,_,o N(w) = 1):
2 P f°° ot )dQ

nw) =1 = S (74)

Kw) = Pf oL wz

¢ We see that the absorption in a medium is also related to
the real refractive index.
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