Radiative Processes

Simon Casassus Astronomía, Universidad de Chile

http:://www.das.uchile.cl/~simon

- I Radiative Transfer
- II Electromagnetic wave propagation
- **III** Radiation
- IV Scattering and Diffraction
- V Free-free, Synchrotron and Compton Scattering
- VI Radiative Transitions

Part III

Radiation

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

- 1 Green function for the wave equation
- 2 Retarded Potentials

Application of the Green function to the electrodynamic potentials

Retarded electromagnetic field

3 Multipolar Radiation

Wave zone Dipolar radiation Magnetic dipole and electric quadrupole radiatio

A Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula
Radiation reaction

• In order to determine $\vec{A}(\vec{x},t)$ and $\Phi(\vec{x},t)$, we need to solve the wave equation with source terms. For a generic field $\Psi(\vec{x},t)$,

$$\nabla^2 \Psi - \frac{1}{c^2} \frac{\partial \Psi}{\partial t^2} = -4\pi f(\vec{x}, t). \tag{1}$$

It is convenient to use the Fourier time-domain,

$$\psi(\vec{x},t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \psi(\vec{x},\omega) e^{-i\omega t} d\omega, \qquad (2)$$

whose inverse is

$$\psi(\vec{x},\omega) = \int_{-\infty}^{+\infty} \psi(\vec{x},t) e^{i\omega t} dt.$$
 (3)

Injecting Ec. 2 in Ec. 1, we reach the Helmholtz equation:

$$(\nabla^2 + k^2)\Psi(\vec{x}, \omega) = -4\pi f(\vec{x}, \omega). \tag{4}$$

Green function for the

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula
Radiation reaction

Non-relativistic applications

.4

 The Helmholtz equation Eq. 4 is very similar to the Poisson equation, and we can anticipate the use of similar machinery in its solution. The Green function satisfies

$$(\nabla^2 + \kappa^2)G_{\kappa}(\vec{\mathbf{x}}, \vec{\mathbf{x}}') = -4\pi\delta(\vec{\mathbf{x}}, \vec{\mathbf{x}}'). \tag{5}$$

- Changing coordinates to a system with origin in \vec{x}' , we see that Eq. 5 has spherical symmetry, and $G_k(\vec{x}, \vec{x}') = G_k(R)$, with $R = |\vec{R}|$ and $\vec{R} = \vec{x} \vec{x}'$
- Eq. 5 can thus be written as

$$\frac{1}{R}\frac{d^2}{dR^2}(R\,G_k) + k^2G_k = -4\pi\delta(\vec{R}). \tag{6}$$

- If $R \neq 0$, the solution to Eq. 6 is $RG_k = Ae^{ikR} + Be^{-ikR}$, where the constants A and B do not depend on k. In order to determine these constants, we use the case k = 0, i.e. Poisson, whose solution is $G_{k=0}(R) = 1/R$, $\longrightarrow A + B = 1$.
- Thus the general solution to Eq. 6 is

$$G_k(R) = AG_k^+(R) + BG_k^-(R)$$
, with $G_k^{\pm} = \frac{e^{\pm ikR}}{R}$ and $A + B = 1$. (7)

vave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Badiation reaction

Non-relativistic applications

5

 The values of A and B depend on the initial conditions, i.e. on the boundary conditions in time. To see this, we return to the time domain and we generalize Eq. 5:

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial}{\partial t^2}\right) G^{\pm}(\vec{x}, t; \vec{x}', t') = -4\pi \delta(\vec{x} - \vec{x}') \delta(t - t'). \tag{8}$$

• Now, returning to the frequency domain ω , we generalize Eq. 5 to

$$(\nabla^2 + k^2)G_k(\vec{x}, \vec{x}'; t') = -4\pi\delta(\vec{x}, \vec{x}')e^{i\omega t'}, \qquad (9)$$

with solution $G_k^{\pm}(R)e^{i\omega t'}$.

To return once more to the time domain, we use Eq. 2, and

$$G^{\pm}(R;t,t')=G^{\pm}(R, au)=rac{1}{2\pi}\intrac{e^{\pm ikR-i\omega au}}{R}d\omega,$$

where $\tau = t - t'$.

Green function for the

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula

Badiation reaction

Non-relativistic applications

6

• For a non-dispersive medium (one with $\omega/k=c$), we reach

$$G^{\pm}(\vec{x},t;\vec{x}',t') = \frac{\delta\left(t' - \left[t \mp \frac{|\vec{x} - \vec{x}'|}{c}\right]\right)}{|\vec{x} - \vec{x}'|} \tag{10}$$

 We apply this Green function to write the generic solutions of Ec. 1:

$$\Psi^{\pm}(\vec{x},t) = \int d^3x' dt' G^{\pm}(\vec{x},t;\vec{x}',t') f(\vec{x}',t'). \tag{11}$$

• The $^+$ case corresponds to the retarded solution, with an entry or an initial condition $\psi_{\rm in}$ (valid before the sources f are activated, at t=0, so $f(\vec{x},t)=0$ if t<0):

$$\Psi^{+}(\vec{x},t) = \Psi_{\rm in}(\vec{x},t) + \int d^{3}x' dt' G^{+}(\vec{x},t;\vec{x}',t') f(\vec{x}',t'), \tag{12}$$

where we see that if t<0, there is no \vec{x} for any given \vec{x}' such that $\left[t-\frac{|\vec{x}-\vec{x}'|}{c}\right]>0$. Hence if t<0, $\int d^3x'dt'G^+(\vec{x},t;\vec{x}',t')f(\vec{x}',t')=0$, and $\Psi(\vec{x},t)=\Psi_{\rm in}(\vec{x},t)$.

Green function for the

Retarded Potentials

Application of the Green function to the electrodynamic potentials

Retarded electromagnetic

Multipolar Radiation

field

Wave zone
Dipolar radiation
Magnetic dipole and electric quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula

Badiation reaction

Non-relativistic applications

.7

Instead the ⁻ case corresponds to the anticipated solution, with an exit condition Ψ_{out} (after the sources f are deactivated, at t = 0, so f(x̄, t) = 0 if t > 0).

$$\Psi^{-}(\vec{x},t) = \Psi_{\text{out}}(\vec{x},t) + \int d^{3}x' dt' G^{-}(\vec{x},t;\vec{x}',t') f(\vec{x}',t'),$$
(13)

where we see that if t>0, there is no \vec{x} for any given \vec{x}' such that $\left[t+\frac{|\vec{x}-\vec{x}'|}{c}\right]<0$. Hence if t>0, $\int d^3x'dt'G^-(\vec{x},t;\vec{x}',t')f(\vec{x}',t')=0$, and $\Psi(\vec{x},t)=\Psi_{\rm out}(\vec{x},t)$.

• In general we use the retarded solution Ψ^+ .

Green function for the

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and el

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula

Radiation reaction

Non-relativistic applications

8

- Green function for the wave equation
- 2 Retarded Potentials

Application of the Green function to the electrodynamic potentials

riotardod orodromagnotio no

Multipolar Radiation

Wave zone Dipolar radiation Magnetic dipole and electric quadrupole radiatior

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula Radiation reaction

- Green function for the wave equation
- 2 Retarded Potentials

Application of the Green function to the electrodynamic potentials

Retarded electromagnetic field

Multipolar Radiation

Wave zone Dipolar radiation Magnetic dipole and electric quadrupole radiation

A Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials

Retarded electromagnetic field

Multipolar Radiation

Wave zone Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula

Radiation reaction

2.1- Application of the Green function to the electrodynamic potentials

• We normally use the retarded solution, with initial condition $\Psi_{in}=0$, or, in compact notation,

$$\Psi(\vec{x},t) = \int d^3x' \frac{[f(\vec{x}',t')]_{\text{ret}}}{|\vec{x}-\vec{x}'|},$$
 (14)

where $[(\cdots)]_{re}$ means to evaluate in $t' = t - |\vec{x} - \vec{x}'|/c$.

Applying to the electrodynamic potentials,

$$\Phi(\vec{x},t) = \frac{1}{4\pi\epsilon_{\circ}} \int d^3x' \frac{[\rho(\vec{x'},t')]_{\text{ret}}}{|\vec{x}-\vec{x'}|}, \qquad (15)$$

$$\vec{A}(\vec{x},t) = \frac{\mu_{\circ}}{4\pi} \int d^3x' \frac{[\vec{J}(\vec{x}',t')]_{\text{ret}}}{|\vec{x}-\vec{x}'|}.$$
 (16)

Green function for the wave equation

Retarded Potentials

Application of the Green

electrodynamic potentials
Retarded electromagnetic
field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula

Radiation reaction

applications

- Green function for the wave equation
- 2 Retarded Potentials

Application of the Green function to the electrodynamic potentials

Retarded electromagnetic field

Multipolar Radiation

Wave zone Dipolar radiation Magnetic dipole and electric quadrupole radiatior

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials

Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula
Radiation reaction

2.2- Retarded electromagnetic field

- In order to calculate \vec{E} and \vec{B} , we use $\vec{B} = \vec{\nabla} \times \vec{A}$ and $\vec{E} = -\vec{\nabla}\phi \frac{\partial \vec{A}}{\partial t}$.
- Alternatively, we can use the Maxwell equations to reach:

$$\nabla^{2}\vec{E} - \frac{1}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}} = -\frac{1}{\epsilon_{o}}\left(-\vec{\nabla}\rho - \frac{1}{c^{2}}\frac{\partial\vec{J}}{\partial t}\right), \quad (17)$$

$$\nabla^2 \vec{B} - \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2} = -\mu_\circ \vec{\nabla} \times \vec{J}. \tag{18}$$

Using the Green function, we get

$$\vec{E}(\vec{x},t) = \frac{1}{4\pi\epsilon_{o}} \int d^{3}x' \frac{1}{R} \left[-\vec{\nabla}'\rho - \frac{1}{c^{2}} \frac{\partial \vec{J}}{\partial t'} \right]_{\text{ret}}, (19)$$

$$\vec{B}(\vec{x},t) = \frac{\mu_{\circ}}{4\pi} \int d^3x' \frac{1}{R} \left[\vec{\nabla}' \times \vec{J} \right]_{\text{ret}}.$$
 (20)

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula
Radiation reaction

2.2- Retarded electromagnetic field

 The expressions for the retarded fields Eqs. 19 and 21 can also be written in a form that connects directly with the static expressions (tarea):

$$\vec{E}(\vec{x},t) = \frac{1}{4\pi\epsilon_{\circ}} \int d^3x' \left\{ \frac{\hat{R}}{R^2} \left[\rho(\vec{x}',t') \right]_{\text{ret}} + \frac{\hat{R}}{cR} \left[\frac{\partial \rho(\vec{x}',t')}{\partial t} \right]_{\text{ret}} - \frac{1}{c^2R} \left[\frac{\partial \vec{J}}{\partial t} \right]_{\text{ret}} \right\}$$

$$\vec{B}(\vec{x},t) = \frac{\mu_{o}}{4\pi} \int d^{3}x' \left\{ \left[\vec{J}(\vec{x}',t') \right]_{\text{ret}} \times \frac{\hat{R}}{R^{2}} + \left[\frac{\partial \vec{J}(\vec{x}',t')}{\partial t} \right]_{\text{ret}} \times \frac{\hat{R}}{cR} \right\}$$
(22)

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials

Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Badiation reaction

Non-relativistic applications

(21)

- Green function for the wave equation
- Retarded Potentials

Application of the Green function to the electrodynamic potentials

3 Multipolar Radiation

*N*ave zone Dipolar radiation Magnetic dipole and electric quadrupole radiation

A Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula
Radiation reaction

- Green function for the wave equation
- 2 Retarded Potentials

Application of the Green function to the electrodynamic potentials

3 Multipolar Radiation

Wave zone

Dipolar radiation Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Badiation reaction

Radiation rea

3.1- Wave zone Wave zone

 We now consider harmonic sources (the general case can be obtained by superposition of such sources):

$$\rho(\vec{x},t) = \rho(\vec{x})e^{-i\omega t},
\vec{J}(\vec{x},t) = \vec{J}(\vec{x})e^{-i\omega t}.$$
(23)

• We saw that in the presence of sources, the field $\vec{A}(\vec{x},t)$ generated in vacuum, and without spatial boundaries, is

$$ec{\mathcal{A}}(ec{x},t) = rac{\mu_\circ}{4\pi} \int d^3x' \int dt' rac{ec{J}(ec{x}',t')}{|ec{x}-ec{x}'|} \delta\left(t' + rac{|ec{x}-ec{x}'|}{c} - t
ight).$$

For harmonic sources,

$$\vec{A}(\vec{x},t) = e^{-i\omega t} \frac{\mu_{\circ}}{4\pi} \int d^3x' \frac{\vec{J}(\vec{x}')e^{ik|\vec{x}-\vec{x}'|}}{|\vec{x}-\vec{x}'|}, \qquad (24)$$

with $k = \omega/c$

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

3.1- Wave zone Wave zone

• We then obtain \vec{H} and \vec{E} with

$$\vec{H} = \frac{1}{\mu_{\circ}} \vec{\nabla} \times \vec{A},\tag{25}$$

and Faraday's law,

$$\vec{E} = \frac{i}{k} \sqrt{\frac{\mu_{\circ}}{\epsilon_{\circ}}} \vec{\nabla} \times \vec{H}. \tag{26}$$

- We now consider sources confined inside a region whose maximum extension is d, and that contains the origin. If d
 « λ, there are 3 regions of interest:
 - The near zone, with $d < r \ll \lambda$, where $e^{ik|\vec{x}-\vec{x}'|} \sim 1$ and we recover the static potentials except for harmonic oscillation, $\vec{A}(\vec{x},t) = \vec{A}(\vec{x})e^{-i\omega t}$.
 - The intermediate zone with $d \ll r \sim \lambda$.
 - The far zone, with $d \ll r$.

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation Magnetic dipole and electric quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula
Radiation reaction

3.1- Wave zone Wave zone

• In the far zone, with $d \ll r$, $|\vec{x} - \vec{x}'| \approx r - \hat{n} \cdot \vec{x}'$, where $\hat{n} = \vec{x}/r \Rightarrow$

$$\lim_{kr\to\infty} \vec{A}(\vec{x}) = \frac{\mu_o}{4\pi} \frac{e^{ikr}}{r} \int \vec{J}(\vec{x}') e^{-ik\hat{n}\cdot\vec{x}'} d^3x'. \tag{27}$$

- We see that $\vec{A}(x,t) = \vec{A}(\vec{x})e^{-i\omega t}$ represents a spherical wave travelling outwards.
- In addition, (tarea) using Eqs 25 and 26 we also see that \vec{E} and \vec{H} also form spherical transverse waves (orthogonal to \hat{n}).
- The far zone thus corresponds to the radiation zone, also called wave zone.

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Badiation reaction

- Green function for the wave equation

3 Multipolar Radiation

Dipolar radiation

Radiation from a single charge

Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula **Badiation reaction**

Non-relativistic

applications

3.2- Dipolar radiation Dipolar radiation

• We now use $d \ll \lambda$ to simplify \vec{A} in the wave zone. The integrand in Eq. 27 can be expanded in powers of $-ik\hat{n}\cdot\vec{x}'$, using

$$e^{-ik\hat{n}\cdot\vec{x}'} = \sum_{n=0}^{\infty} \frac{(-ik)^n}{n!} (\hat{n}\cdot\vec{x}')^n.$$

• Therefore,

$$\vec{A}(\vec{x}) = \frac{\mu_{\circ}}{4\pi} \frac{e^{ikr}}{r} \sum_{n=0}^{\infty} \frac{(-ik)^n}{n!} \int \vec{J}(\vec{x}') (\hat{n} \cdot \vec{x}')^n d^3 x'.$$
 (28)

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula

Radiation reaction

3.2- Dipolar radiation Dipolar radiation

• For n = 0, which is the dominant term in the expansion in $k\hat{n} \cdot \vec{x}'$, we get:

$$\vec{A}(\vec{x}) = \frac{\mu_{\circ}}{4\pi} \frac{e^{ikr}}{r} \int \vec{J}(\vec{x}') d^3x'. \tag{29}$$

- Using the continuity equation, $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0$, we have $i\omega \rho = \vec{\nabla} \cdot \vec{J}$.
- Therefore (tarea):

$$\int \vec{J}(\vec{x}')d^3x' = -\int \vec{x}'(\vec{\nabla}' \cdot \vec{J})d^3x' = -i\omega \int \vec{x}'\rho(\vec{x}')d^3x'.$$
(30)

Finally,

$$\vec{A}(\vec{x}) = \frac{-i\mu_{\circ}\omega}{4\pi} \vec{p} \frac{e^{ikr}}{r}, \text{ with } \underbrace{\vec{p} = \int \vec{x}' \rho(\vec{x}') d^3 x'}_{\text{elecric dipole}}.$$
 (31)

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation Magnetic dipole and electric

quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula

Badiation reaction

3.2- Dipolar radiation Dipolar radiation

• We now calculate the \vec{E} and \vec{H} fields:

$$\vec{H} = \frac{ck^2}{4\pi} (\hat{n} \times \vec{p}) \frac{e^{ikr}}{r}, \vec{E} = \sqrt{\mu_{\odot}} \epsilon_{\odot} \vec{H} \times \hat{n},$$
(32)

where we see that electric dipole radiation is linearly polarized.

• The power emitted in direction \hat{n} can be written with $dP = r^2 d\Omega \hat{n} \cdot \vec{S} \Rightarrow$,

$$\frac{dP}{d\Omega} = \frac{1}{2} \Re \left[r^2 \hat{n} \cdot (\vec{E} \times \vec{H}^*) \right],$$

$$= \frac{c^2}{32\pi^2} \sqrt{\frac{\mu_o}{\epsilon_o}} k^4 |\vec{p}|^2 \sin^2(\theta). \tag{33}$$

The total power is

$$P = \frac{c^2 k^4}{12\pi} |\vec{p}|^2. \tag{34}$$

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation Magnetic dipole and electric

quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula

Badiation reaction

- Green function for the wave equation

Multipolar Radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula **Badiation reaction**

3.3-Magnetic dipole and electric quadrupole radiation

- The next term in the expansion of $e^{-ik\hat{n}\cdot\vec{x}'} = \sum_{n=0}^{\infty} \frac{(-ik)^n}{n!} (\hat{n}\cdot\vec{x}')^n$ corresponds to n=1.
- Eq. 28 gives:

$$\vec{A}(\vec{x}) = \frac{\mu_{\circ}}{4\pi} \frac{e^{ikr}}{r} \left(\frac{1}{r} - ik \right) \int \vec{J}(\vec{x}') (\hat{n} \cdot \vec{x}') d^3 x'. \tag{35}$$

 This term originates magnetic dipole and electric quadrupole contributions. To see this, we separate the integrand:

$$\vec{J}(\vec{x}')(\hat{n}\cdot\vec{x}') = \underbrace{\frac{1}{2}\left[(\hat{n}\cdot\vec{x}')\vec{J} + (\hat{n}\cdot\vec{J})\vec{x}'\right]}_{A} + \underbrace{\frac{1}{2}(\vec{x}'\times\vec{J})\times\hat{n}}_{B}.$$
(36)

• We first consider the contribution of part B and identify the magnetization $\vec{\mathcal{M}}$,

$$\vec{\mathcal{M}} = \frac{1}{2}(\vec{x} \times \vec{J}). \tag{37}$$

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

3.3-Magnetic dipole and electric quadrupole radiation

• Then, for the B part,

$$\vec{A}(\vec{x}) = \frac{ik\mu_{\circ}}{4\pi}(\hat{n} \times \vec{m}) \frac{e^{ikr}}{r} (1 - \frac{1}{ikr}), \text{ with}$$
 (38)

$$\vec{m} = \int \vec{\mathcal{M}} d^3 x. \tag{39}$$

• In the radiation zone, $kr \gg 1$, we obtain:

$$\vec{A}(\vec{x}) = \frac{ik\mu_{\circ}}{4\pi}(\hat{n}\times\vec{m})\frac{e^{ikr}}{r}, \tag{40}$$

$$\vec{E}(\vec{x}) = -\frac{k^2}{4\pi} \sqrt{\frac{\mu_{\circ}}{\epsilon_{\circ}}} (\hat{n} \times \vec{m}) \frac{e^{ikr}}{r}, \tag{41}$$

$$\vec{H}(\vec{x}) = -\sqrt{\frac{\epsilon_o}{\mu_o}}(\vec{E} \times \hat{n}).$$
 (42)

This contribution is called magnetic dipole radiation.

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula

Badiation reaction

3.3-Magnetic dipole and electric quadrupole radiation

 For the A part in the contribution from n = 1, after standard handling we get:

$$A = \frac{i\omega}{2} \int \vec{x}'(\hat{n} \cdot \vec{x}') \rho(\vec{x}') d^3x', \tag{43}$$

which represents order 2 moments of $\rho(\vec{x}')$, i.e. an electric quadrupole contribution, which we will not develop.

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

- Green function for the wave equation
- 2 Retarded Potentials

Application of the Green function to the electrodynamic potentials

3 Multipolar Radiation

Wave zone Dipolar radiation Magnetic dipole and electric quadrupole radiation

4 Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

5 Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

tadiation from a single harge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

- Green function for the wave equation
- 2 Retarded Potentials

Application of the Green function to the electrodynamic potentials

Retarded electromagnetic field

3 Multipolar Radiation

Wave zone Dipolar radiation Magnetic dipole and electric quadrupole radiatior

4 Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula

Radiation reaction

6 Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials

Larmor Formula

Radiation reaction

4.1- Liénard-Wiechert potentials

- Consider a particle with charge q and trajectory $\vec{r}(t)$, with velocity $\vec{u}(t)$.
- We can apply the retarded solution with source terms $\rho(\vec{x},t) = q\delta(\vec{x}-\vec{r}(t))$, and $\vec{j}(\vec{x},t) = \rho(\vec{x},t)u(t)$, and thus obtain the resulting potentials (tarea):

$$\Phi(\vec{x},t) = \frac{1}{4\pi\epsilon_{\circ}} \left[\frac{q}{\left(1 - \hat{n}(t') \cdot \vec{\beta}(t')\right) R(t')} \right]_{\text{ret}}, \quad (44)$$

$$\vec{A}(\vec{x},t) = \frac{\mu_{\circ}}{4\pi} \left[\frac{q\vec{u}}{\left(1 - \hat{n}(t') \cdot \vec{\beta}(t')\right) R(t')} \right]_{\text{ret}}, \quad (45)$$

where $\vec{R}(t') = \vec{x} - \vec{r}(t')$, $R = |\vec{R}|$, $\hat{n}(t') = \frac{\vec{R}}{R}$, and $\vec{\beta}(t') = \frac{\vec{u}(t')}{c}$. These are the Liénard-Wiechert (L.-W.) potentials.

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert cotentials

Larmor Formula

Radiation reaction

4.1- Liénard-Wiechert potentials

 We can also calculate the corresponding electromagnetic field (tarea):

$$\vec{E}(\vec{x},t) = \underbrace{\left[\frac{q}{4\pi\epsilon_{\circ}} \frac{(1-\beta^{2})(\hat{n}-\vec{\beta})}{R^{2}(1-\hat{n}\cdot\vec{\beta})^{3}}\right]_{\text{ret}}}_{+\underbrace{\left[\frac{q}{4\pi\epsilon_{\circ}} \frac{(\hat{n}\times((\hat{n}-\vec{\beta})\times\dot{\vec{\beta}}))}{cR(1-\hat{n}\cdot\vec{\beta})^{3}}\right]_{\text{ret}}}_{E_{\text{rad}}}$$
(46)

with

$$\vec{B}(\vec{x},t) = \frac{1}{c}\hat{n} \times \vec{E}(\vec{x},t). \tag{47}$$

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials

Larmor Formula

Badiation reaction

4.1- Liénard-Wiechert potentials

• We see that far away from the particle, the term labelled $E_{\rm rad}$ will eventually dominate. In fact, for a Fourier component, or for harmonic motion with $\vec{r}(t) \propto \exp(i\omega t)$, we find that (tarea)

$$\frac{E_{\rm rad}}{E_{\rm vel}} = \beta \frac{R}{\lambda},\tag{48}$$

and we see that the radiation term dominates if $R \gg \lambda/\beta$, sometimes also called the *far zone*.

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone Dipolar radiation Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials

Larmor Formula Badiation reaction

- Green function for the wave equation
- 2 Retarded Potentials

Application of the Green function to the electrodynamic potentials

Retarded electromagnetic field

3 Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric quadrupole ra

4 Radiation from a single charge

Liénard-Wiechert potentials

Larmor Formula

Radiation reaction

5 Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula

Radiation reaction

- I adiation reaction

4.2- Larmor Formula

• In the far zone, with $R \to \infty$, and in the Galilean limit $(\beta \ll 1)$, the power radiated per unit solid angle is (tarea):

$$\frac{dP}{d\Omega} = \frac{\mu_{\circ}}{16\pi^2} q^2 a^2 \sin^2(\theta), \tag{49}$$

in which $a = |\vec{u}|$ and θ is the angle between \hat{n} and \vec{a} . This is the Larmor formula.

- By applying Eq. 49 to the case of an harmonically oscilating charge with dipole $\vec{p}=q\vec{r}_{\circ}\exp(i\omega t)$, we can recover Eq. 33 (tarea).
- We therefore conclude that the wave zone as defined in Sec. 1 matches the Galilean limit (see the discussion on the dipole approximation in Sec. 3.3 of Rybicki & Lightman).

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone

Dipolar radiation

Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula

Radiation reaction

- Green function for the wave equation
- Retarded Potentials

Application of the Green function to the electrodynamic potentials

netarded electromagnetic field

Multipolar Radiation

Wave zone Dipolar radiation Magnetic dipole and electric quadrupole radiatior

4 Radiation from a single charge

Lienard-Wiechert potentials Larmor Formula

Radiation reaction

Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula

Radiation reaction

4.3- Radiation reaction

- Let's consider a periodic sistem, such that its mechanical state is identical between times t₁ and t₂.
- Still in the Galilean limit, the total energy radiated by the charge between t₁ and t₂ is

$$W = \frac{\mu_{\circ} q^2}{6\pi c} \int_{t1}^{t2} a^2 dt.$$
 (50)

 Energy conservation requires the existence of a 'radiation reaction' force F_{rad}, such that W is extracted from the particle's kinetic energy,

$$\int_{t_1}^{t_2} dt \vec{F}_{\text{rad}} \cdot \vec{u} = -W. \tag{51}$$

 One expression for the radiation reaction is the Abraham-Lorentz formula,

$$\vec{F}_{\rm rad} = \frac{\mu_{\rm o} q^2}{6\pi c} \dot{\vec{a}}.$$
 (52)

We can confirm that Eq. 52 indeeds fullfills Eq. 51 (tarea).

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula

Radiation reaction

- Green function for the wave equation
- 2 Retarded Potentials

Application of the Green function to the electrodynamic potentials

Retarded electromagnetic field

3 Multipolar Radiation

Wave zone Dipolar radiation Magnetic dipole and electric quadrupole radiatior

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula Radiation reaction

5 Non-relativistic applications

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric
quadrupole radiation

Radiation from a single charge Liénard-Wiechert potentials

Larmor Formula

Badiation reaction

Non-relativistic

5- Non-relativistic applications

- Thomson scattering (Rybicki & Lightman Sec. 3.4)
- Harmonically bound particles (Rybicki & Lightman Sec. 3.6)

Green function for the wave equation

Retarded Potentials

Application of the Green function to the electrodynamic potentials Retarded electromagnetic field

Multipolar Radiation

Wave zone
Dipolar radiation
Magnetic dipole and electric quadrupole radiation

Radiation from a single charge

Liénard-Wiechert potentials Larmor Formula

Radiation reaction