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1 Scattering

1.1 General formulation
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• Let us first consider a single obstacle (or particle), whose maximum dimmen-
sion is d.

• The incident wave can be described with

E⃗i = ê◦E◦e
ikn̂◦·x⃗ (1)

H⃗i =

√
µ◦

ϵ◦
n̂◦ × E⃗i. (2)

• Note that we describe the incident polarization in terms of ê◦.
• When interacting with the target, the fields induce electric and magnetic dipoles

as in the case of static fields in the ‘static zone’ (save for the time dependence
exp(−iωt)).

• The induced dipoles can, in turn, generate electric and magnetic dipole radia-
tion, resulting in the fields E⃗s y H⃗s.
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1.2 Scattering matrix
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• In the region outside the target, labelled 2, the fields are given by

E⃗2 = E⃗i + E⃗s, (3)
H⃗2 = H⃗i + H⃗s. (4)

• It is convenient to project the fields on the scattering plane. For the incident
plane wave,

E⃗i = (E◦∥êi∥ + E◦⊥êi⊥)e
i(kz−ωt)

= E∥êi∥ + E⊥êi⊥, (5)

where êi∥ × êi⊥ = êz.
• In the wave zone we know that the field emitted by the induced dipoles, i.e.

the scattered field, will converge to a transverse wave, i.e. ∥E⃗s∥ ∝ eikr

r
, so

E⃗s = E∥sê∥s + E⊥sê⊥s, (6)

with
ê∥s = êθ, ê⊥s = −êϕ, and ê⊥s × ê∥s = êr. (7)
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• Because of the linearity of the Maxwell equations, the scattered fields will be
linear combinations of the incident fields.

• We can thus relate the scattered and incident fields in terms of the amplitude
scattering matrix, with coefficients {si}4i=1:(

E∥s
E⊥s

)
=

eikr

−ikr

(
s2 s3
s4 s1

)(
E∥i
E⊥i

)
. (8)
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• The time-averaged Poynting vector anywhere outside the target, i.e. in region
2, is

S⃗2 =
1

2
ℜ
[
E⃗2 × H⃗∗

2

]
= S⃗i + S⃗s + S⃗ext, (9)

where

S⃗i =
1

2
ℜ
[
E⃗i × H⃗∗

i

]
, (10)

S⃗s =
1

2
ℜ
[
E⃗s × H⃗∗

s

]
, (11)

S⃗ext =
1

2
ℜ
[
E⃗i × H⃗∗

s + E⃗s × H⃗∗
i

]
. (12)

• The notation “ext” anticipates that this term, which corresponds to the interac-
tion between the scattered and incident fields, will cause the extinction of the
incident specific intensity.
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• The Stokes parameters for the scattered fields are similar to the case of plane
waves seen in Chap. B, Sec. 2.2.

• For the scattered field we use ê∥ and ê⊥ rather than ê1 and ê2:

Is = ⟨E∥sE
∗
∥s + E⊥sE

∗
⊥s⟩ (13)

Qs = ⟨E∥sE
∗
∥s − E⊥sE

∗
⊥s⟩, (14)

Us = ⟨E∥sE
∗
⊥s + E⊥sE

∗
∥s⟩, (15)

Vs = i⟨E∥sE
∗
⊥s − E⊥sE

∗
∥s⟩. (16)

.10

• We can now relate the scattered Stokes parameters in terms of the incident
Stokes parameters, using the amplitude scattering matrix

Is
Qs

Us

Vs

 =
1

k2r2


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44




Ii
Qi

Ui

Vi

 . (17)

• For example, (TAREA):

S11 =
1

2
(∥s1∥2 + ∥s2∥2 + ∥s3∥2 + ∥s4∥2), (18)

S12 =
1

2
(−∥s1∥2 + ∥s2∥2 − ∥s3∥2 + ∥s4∥2), (19)

S21 =
1

2
(−∥s1∥2 + ∥s2∥2 + ∥s3∥2 − ∥s4∥2), (20)

S33 =
1

2
ℜ [s1s

∗
2 + s3s

∗
4] . (21)
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1.3 Extinction
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• Consider a sphere S centered on a target particle. The net flux of the incident
Poynting vector through S is null, so the flux of the total Poynting vector must
correspond to radiative energy produced or absorbed by the particle.

.12

• The total Poynting vector is S⃗ = S⃗i+ S⃗s+ S⃗ext (see Eqs. 9, 10,11,12), and we
write its flux through S as

Wa = −
∫
S
S⃗ · êrdS, (22)

Wa = Wi −Ws +Wext, (23)

where Wi = −
∫
S⃗i · êrdS, Ws = +

∫
S⃗s · êrdS and Wext = −

∫
S⃗ext · êrdS .

• By symmetry Wi=0, so
Wext = Wa +Ws, (24)

i.e. Wext is the sum of the power absorbed by the particle and that of the
scattered radiation.

.13

• We consider a linearly polarized plane wave with E⃗i ∥ x̂. In the wave zone,
we can write the fields as

E⃗s =
eik(r−z)

−ikr
X⃗Ei, and (25)

H⃗s =
k

ωµ
e⃗r × E⃗s, (26)

where X⃗ is the vector scattering amplitude,

X⃗ = (s2 cos(ϕ) + s3 sin(ϕ))ê∥s + (s4 cos(ϕ) + s1 sin(ϕ))ê⊥s. (27)

Note that X⃗ is dimensionless, and also depends on θ through the si.
.14

• After some calculation (see BH83), in the wave zone (lim kr → ∞, tarea),

Wext = Ii
4π

k2
ℜ[(X⃗.êx)|θ=0]. (28)

• We introduce the extinction cross-section

Cext =
Wext

Ii
, (29)

and following Eq. 24, Cext = Ca + Cs.
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• Using Eqs. 25 and Eqs. 26, we get

Cs =

∫
4π

∥X⃗∥2

k2
dΩ. (30)

• We identify the differential scattering cross section,

dσs
dΩ

(θ, ϕ) =
∥X⃗∥2

k2
, (31)

and the scattering phase function

Φ(θ, ϕ) =
1

Cs

dσs
dΩ

. (32)

.15

• Note that the total cross sections for an assembly of randomly distributed par-
ticles is additive (see Sec. 2.2 below). If the particles are spheres, or else are
randomly oriented, Φ only depends on θ.

• Another useful quantity is the asymmetry parameter,

g = ⟨cos(θ)⟩ =
∫
4π

cos(θ)Φ(θ, ϕ)dΩ. (33)

• The cross sections are usually reported in terms of the extinction, scattering
and absorption efficiencies,

Qext =
Cext

Σ
, Qs =

Cs

Σ
, and Qa =

Ca

Σ
, (34)

where Σ is the projected area of the target in the direction of incidence - i.e.
Σ = πa2 for a sphere with radius a.

.16

• The above cross-sections in Eqs. 29 and 30 were derived for x−polarized in-
cident light, i.e. Cext,x and Cs,x, but are easily extended to y−polarized light,
Cext,y and Cs,y.

• For natural light,

Cext =
1

2
(Cext,x + Cext,y) and Cs =

1

2
(Cs,x + Cs,y). (35)

• If the scattering volume, which encompases all targets, includes a continuum
of targets with number density n, then we may introduce the extinction coeffi-
cient which attenuates the incident specific intensity Iν ,

αext = nCext, (36)

and
dIν = −αextIνds. (37)
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2 Rayleigh scattering

2.1 Single target

• In the wave zone and in the Rayleigh regime (target ≪ λ), we know from
Dipolar Radiation (Chapter C) that the fields in direction n̂ are

E⃗s =
1

4πϵ◦
k2
eikr

r

[
(n̂× p⃗)× n̂− n̂× m⃗

c

]
(38)

H⃗s =

√
µ◦

ϵ◦
n̂× E⃗s. (39)

• We extend the concept of dP
dΩ

to select a polarization state ê in the scattered
wave, and after normalizing by the incident flux, we obtain the differential
scattering cross section dσ

dΩ
= dP

SidΩ
:

dσ
dΩ
(n̂, ê; n̂◦, ê◦) = r2 |ê

∗·E⃗s|2

|ê∗◦·E⃗i|2
,

= k4

(4πϵ◦E◦)2

∣∣ê∗ · p⃗+ (n̂× ê∗) · m⃗
c

∣∣2 . (40)

.18

• As an example let’s consider the case where the target is a small dielectric
sphere, with radius a, µ/µ◦ = µr = 1, and with ϵ = ϵ◦ϵr(ω).

• In the static zone, where d≪ r ≪ λ, the fields are quasistatic, (tarea)

p⃗ = 4πϵ◦

(
ϵr − 1

ϵr + 2

)
a3E⃗i, (41)

and there is no magnetic dipole moment.
• The scattering cross section is then, for polarization ê,

dσ

dΩ
= k4a6

∣∣∣∣ϵr − 1

ϵr + 2

∣∣∣∣2 |ê∗ · ê◦|2 . (42)

.19

• For natural light, or non-polarized incident radiation, we take the average:〈
dσ

dΩ

〉
= k4a6

∣∣∣∣ϵr − 1

ϵr + 2

∣∣∣∣2 〈|ê∗ · ê◦|2〉 . (43)

• In terms of the polarizations parallel and perpendicular to the plane of scatter-
ing (n̂, n̂◦), for spherical coordinates with n̂◦ ∥ ẑ (TAREA):

dσ∥
dΩ

=
1

2
k4a6

∣∣∣∣ϵr − 1

ϵr + 2

∣∣∣∣2 cos2(θ) (44)

dσ⊥
dΩ

=
1

2
k4a6

∣∣∣∣ϵr − 1

ϵr + 2

∣∣∣∣2 (45)
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• For Stokes I we get

dσ

dΩ
= k4a6

∣∣∣∣ϵr − 1

ϵr + 2

∣∣∣∣2 12(1 + cos2(θ)), (46)

and a measure of the polarization fraction is Π(θ) ≡ (dσ⊥
dΩ

− dσ∥
dΩ

)/I = sin2(θ)
1+cos2(θ)

.
.20

2.2 Scattering for N targets

• For a system with N targets, we use the superposition principle,

dσ

dΩ
(n̂, ê; n̂◦, ê◦) = r2

|ê∗ ·
∑N

j=1 E⃗s,j|2

|ê∗◦ · E⃗i|2
. (47)

• In the radiation zone, |x⃗− x⃗′| ∼ r − n̂ · x⃗′,

dσ

dΩ
=

k4

(4πϵ◦E◦)2

∣∣∣∣∣
N∑
j=1

[
ê∗ · p⃗j + (n̂× ê∗) · m⃗j

c

]
eiq⃗·x⃗j

∣∣∣∣∣
2

, (48)

where q = kn̂◦ − kn̂ and where the {xj} are the target positions.
• If all targets are identical,

dσ

dΩ
=

dσ

dΩ

∣∣∣∣
1

F(q⃗), where F(q⃗) =

∣∣∣∣∣∑
j

eiq⃗·x⃗j

∣∣∣∣∣
2

. (49)

.21

• If the positions x⃗j are random (TAREA),

⟨F(q⃗)⟩ =

〈∣∣∣∣∣∑
j

eiq⃗·x⃗j

∣∣∣∣∣
2〉

≈ N, (50)

and
dσ

dΩ
≈ N

k4

(4πϵ◦E◦)2

∣∣∣∣∣
N∑
j=1

[
ê∗ · p⃗j + (n̂× ê∗) · m⃗j

c

]
eiq⃗·x⃗j

∣∣∣∣∣
2

. (51)

.22

• If the targets are regularly ordered, for instance in a cubic network por N1 ×
N2 ×N3 with spacing a (TAREA),

F(q⃗) = N2

[
sin2

(
1
2
N1q1a

)
sin2

(
1
2
N2q2a

)
sin2

(
1
2
N3q3a

)
N2

1 sin
2
(
1
2
q1a

)
N2

2 sin
2
(
1
2
q2a

)
N2

3 sin
2
(
1
2
q3a

)] , (52)

where q = q1ê1 + q2ê2 + q3ê3.
.23
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3 Mie theory

3.1 Scattering by a sphere

• Away from the Rayleigh regime, and if the target does not satisfy diffraction
boundary conditions (such as for a conductor), then in order to obtain the dif-
ferential scattering cross section we need to solve the Helmholtz equation for
each harmonic component of the fields, subject to interface boundary condi-
tions on the surface of the target (S):[

E⃗2(x⃗)− E⃗1(x⃗)
]
× n̂ = 0 and (53)[

H⃗2(x⃗)− H⃗1(x⃗)
]
× n̂ = 0, for any x⃗ ∈ S (54)

• The problem is solved by expanding the incident and scattered electric field
in a complete set of functions, composed of Legendre polynomials for the θ
part, and of spherical Bessel functions for the radial part.

.24

• The solution is expressed in terms of the size parameter,

x = ka =
2πa

λ
, (55)

and of m = k1/k, i.e. the real part of the refractive index inside the target.
• The expansion of the scattered fields involves the following coefficients (Eq.

4.53 Bohren & Humman 1998)

an =
m2jn(mx)[xjn(x)]

′ − µ1jn(x)[mxjn(mx)]
′

m2jn(mx)[xh
(1)
n (x)]′ − µ1h

(1)
n (x)[mxjn(mx)]′

, (56)

bn =
µ1jn(mx)[xjn(x)]

′ − jn(x)[mxjn(mx)]
′

µ1jn(mx)[xh
(1)
n (x)]′ − h

(1)
n (x)[mxjn(mx)]′

, (57)

where µ1 is the magnetic permitivity of the target.
.25

• The cross-sections are (Eqs. 4.61 and 4.62 of Bohren & Huffman 1998):

Csca =
2π

k2

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
and (58)

Cext =
2π

k2

∞∑
n=1

(2n+ 1)ℜ{an + bn}. (59)

.26
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• The angle-dependent amplitude scattering matrix is diagonal, s3 = s4 = 0,
and

s1 =
∑ 2n+ 1

n(n+ 1)
(anπn + bnτn) and (60)

s2 =
∑ 2n+ 1

n(n+ 1)
(anτn + bnπn), where (61)

πn =
P 1
n

sin(θ)
and τn =

dP 1
n

dθ
, (62)

and where P 1
n is the Legendre function associated to the corresponding Leg-

endre polynomial

Pm
n (µ) = (1− µ2)m/2d

mPn(µ)

dµm
, (63)

with µ = cos(θ).
.27

• The scattering phase function for spheres can be obtained from Eqs. 27, 31
and 32:

Φ(θ) = 2πΦ(θ, ϕ) = 2π
s21 + s22
k2Csca

= 4π
S11

k2Csca

. (64)
.28

• Standard packages are available to compute the radiative transfer parameters
using Mie theory. In what follows, we show the result of the bhmie.f code,
available here: https://en.wikipedia.org/wiki/Codes_for_
electromagnetic_scattering_by_spheres. We used the Python
transcription and the wrappers from Kees Dullemond, available as part of the
RADMC3D Monte-Carlo radiative transfer package: https://www.ita.
uni-heidelberg.de/˜dullemond/software/radmc-3d/.

• The cross sections C are related to the opacities κ by C = κ ∗m, where m is
the mass of the target sphere.

• Here the phase function Φ is normalized such that Φ(θ, ϕ) = 1 corresponds to
isotropic scattering.

• The next 3 plots correspond to a = 10µm, and used the pyrmg70 optical
constants.

.29
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• TAREA: reproduce the previous 3 plot for a 1 mm-sized sphere composed
of pure graphite, and add an extra plot for the grain albedo. Plot the phase
function at a wavelength of 1 mm.

.33

4 Diffraction

• The problem of diffraction is similar to scattering, except that we specify the
values of the fields at the edges or at the surfaces of the targets.

• Consider a scalar field ψ(x⃗, t) which satisfies the wave equation. For a har-
monic component, with time dependence ∝ exp(−iωt),

(∇2 + k2)ψ(x⃗) = 0. (65)

• We want to solve the Helmholtz Equation (Eq. 65) for a wave reflected/trans-
mitted at a surface S1. We close space with another surface, S2, which we take
out to ∞.

.34

• We typically use ψ = 0 on S1, except in possible openings.
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• Let us consider the following Green function GD:

GD(x⃗, x⃗
′) = G(x⃗, x⃗′) + F (x⃗, x⃗′), (66)

where
(∇2 + k2)G(x⃗, x⃗′) = −δ(x⃗− x⃗′), (67)

and
(∇2 + k2)F (x⃗, x⃗′) = 0. (68)

• We adjust F so that GD(x⃗, x⃗
′) = 0 if x⃗ ∈ S1.

.35

• We will now need the Green identity. For two scalar fields Ψ and Φ,∫
V
(Φ∇2Ψ+ ∇⃗Φ · ∇⃗Ψ)d3x =

∮
A
Φ
∂Ψ

∂n
dA, (69)

where
∂Ψ

∂n
≡ ∇⃗Ψ · n̂.

• The Green identity leads to the Green theorem:∫
V
(Φ∇2Ψ−Ψ∇2Φ)d3x =

∮
A

(
Φ
∂Ψ

∂n
−Ψ

∂Φ

∂n

)
dA. (70)

.36

• The Green Theorem (after an extension to Eq. 65), using the pair GD and ψ,
yields (tarea):

ψ(x⃗) =

∮
S

[
ψ(x⃗′)n̂′ · ∇⃗′GD(x⃗, x⃗

′)−GD(x⃗, x⃗
′)n̂′ · ∇⃗′ψ(x⃗′)

]
dS ′ (71)

and using the property that GD(x⃗, x⃗
′) = 0 if x⃗′ ∈ S,

ψ(x⃗) =

∮ [
ψ(x⃗′)n̂′ · ∇⃗′GD(x⃗, x⃗

′)
]
dS ′. (72)

• Note the absence of the volume integral in the application of Green’s theo-
rem that results in Eq. 72, which reflects the absence of sources in the wave
equation.

.37
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• As an example we focus on the case where S1 is an infinite plane (at z = 0).
• The Green function for the wave equation (Chapter C) is given by:

G(x⃗, x⃗′) =
1

4π

eikR

R
, with R⃗ = x⃗− x⃗′. (73)

• We use the method of images to determine F :

F = − 1

4π

eikR
′

R′ , with R⃗′ = x⃗− x⃗′′, (74)

where x⃗′′ is symmetrical to x⃗ relative to z = 0.
• By design the Green function,

GD(x⃗, x⃗
′) =

1

4π

(
eikR

R
− eikR

′

R′

)
, (75)

cancels for x⃗′ ∈ S1.
.38

• Injecting GD (Eq. 75) in the Green Theorem (Eq. 72) we get to (tarea):

ψ(x⃗) =
k

2πi

∮
S1

ψ(x⃗′)
n̂′ · R⃗
R2

eikR
[
1− 1

ikR

]
dS ′, (76)

where we have used that when S2 → ∞, ψ ∼ eikR/R on S2, and ∇′GD ∼
1/R2, so that the integrand on S2 decays faster than (1/R2).

• If we consider that ψ(x⃗′) = 0 on S1 except for an opening, in the limit z → ∞,
n̂′·R⃗
R

∼ 1,

ψ(x⃗) =
k

2πi

∫
opening

eikR

R
ψ(x⃗′)dS ′, (77)

where we recognize the “secondary sources” invoked in Huygens’ Principle.
.39

• For the vectorial case of the electric field difracted by an opening in a plane
conductor at z = 0, a detailed calculation gives (see Jackson 10.6 and 10.7),

E⃗(x⃗) =
1

2π
∇⃗ ×

∫
(n̂× E⃗i)

eikR

R
dS ′. (78)

• In the region z → ∞, we expect that E⃗ will be a wave, and if E⃗i is a plane
wave,

E⃗(x⃗) ≈ ik

2π
n̂× (n̂′ × E⃗i)

∫
eikR

R
dS ′. (79)

.40
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