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1 Atomic/molecular coupling with radiation

1.1 Interaction with electromagnetic radiation

__The coupling term between charged particles and the electromagnetic field, i -
A(k~f—wt)ﬁ can be expressed through an expansion in k-Z as Hiy, = Ha+Hy+Hq
(see Shu I,24), for which

Hy = —E - d (zeroth order)
where, for a molecule, d= d; + d;uc.
Hy = —B - M (first order)

where the magnetic dipole moment M « L, and

e

665 1 (3%% — |Z|°T) (also order one).

Hq =

In general Hy > Hyg.

'when substituting 7 — o’ — %A’, and neglecting terms in A2 (OK for the ISM) see Shu I, 21
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1.2 Bound-bound transition probabilities and cross-sections

In time-dependent perturbation theory, the rate of radiative excitations ¢ — f is
(Fermi’s golden rule):
dP;y
dt

oc N(wig) {65 Hint () |3)]*

In a cubic box where the ocupation number of state 77 is 1, the density of states is
d*n = Vd*w/(2mc)?, with a volume V' — oco.

The absorption cross-section o, derives from P,y = N;/N; o # of absorbed
photons [}

MN(i7) dP: o0 4w’
s i _ Sl
Pz’f — /d n % ct Oif = di = \/0 Oif C M(W) (271’)362 dw

Identifying (see Shu I, 22, 23), we obtain

0if o¢ [ Hin(w) |93} 6(w — wiy).

1.3 Oscilator strength

For the electric dipole Hamiltonian, one gets

472 = 02
0ir = ghc |(@ldl00)]| 5w —wy),

which is usually expressed in terms of the oscilator strength f;¢,

we? 4mm,

fis6(v = vig), with fip = BTG

2

(sldlos)

O-z'f =

MeC

For a single electron with position 7,

_ 2me(wip (f]20)?
Bhwif

fis

which is roughly the ratio between the vibrational potential energy of the electron
and that of the radiated photon.

1.4 Relationship with Einstein coeficients

The equation of detailed balance,

niBile,Z.f = TLfAfi + nfoZ-J,,ﬁ,

note optically thin case: dNy = —I'Nydt + %Nidt.
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and the LTE relationships,

1.5

= axp(— and J, = B.(T). leadto
n; gi p( k1 )7 v V( )7 !

CQ

9i 3,2
Ay = =—(2h By, By =——A¢=1(g; B;s.
! gf( v’ /c”)Biy 5i = 55 Asi = (9i/95) Biy

The rate of stimulated excitations is related to the oscilator strength using the
requirement

Jy J,
Therefore,
47?2 e?
T mecff (2)

Natural line width

We consider an atom in state ¢, subjected to radiation with frequency wj;,
corresponding to the energy interval with a final state f.
The wave function of the target can be expanded as

[6) = cilds). (3)
J
Denoting I' = Aj;, the probably amplitude for state f satisfies
d|cs]” 2
=T . 4
7 |cs] 4)

In terms of the amplitude coefficients, Fermi’s golden rule should be modified
to account for spontaneous decay:

: S — abs (wei—w I
&p = =il N[ HY|ga)e’rm)" — 3¢t )

We can solve Eq.recognizing e!'/? as an integrating factor.

After taking the modulus, in the limit ¢ — oo,

(65| HZ |3 |”

|Cf(oo)| =h" (Wfi W) (F/2)2'

(6)




1

.6 Selection rules

* Electric dipole
— atoms: Al =1, Am = 0.

— molecules:

* vibrational-rotational transitions, or rovibrational, AJ = £1, Am =

0,Av = +1, allowed when A # 0, AJ = 0[}
* electronic transitions, AA = 0,41, AS =0

% electronic-vibrational-rotational transitions (i.e. vibronic transitions):
AJ =021, Am = 0,£1 and AJ # 0if A = AA = 0 and if

J =0.
+1 — R branch
AJ =< 0 — Qbranch
—1 — P branch

* magnetic dipole, atoms: Al = 0, Am = 0, +1.

* electric quadrupole, atoms: Al = 0,£2, Am = 0,+1, +2, rotational transi-

tions in molecules AJ = 0, +1, +2.

CO

o

Relative Intensity

=

Relative Intensity

Subaru - IRCS + echelle & X-disperser (Goto et al. 2003, ApJ, 598, 1038)
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3Lambda doubling, two states +A for each J. Example: hyperfine structure of the OH A doublet

~1.7 GHz.
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1.7 Selection rules — H,

¢ In the case of Hy we have d = 0. Moreover the fundamental state is [, = 0,
and S = 0, so that M = 0 and all low-energy transitions for H, are quadrupo-
lar.

* Note that the antisymmetry of the nuclear wave function implies that the state
J =1(J odd) is triplet (Ortho Hs, I = Sy yclear = 1 ), while J = 0 (J even)
is singlet (Para Hs, I = 0).

* In H, the exclusion principleﬁ]forbids AJ = 1, unless the transition involves a
change in spin state. The spin transitions can only occur through the exchange
of protons in collisions. Radiative transitions between spin states can occur,
but at a rate corresponding to the quadrupolar transitions in the Hamiltonian
of the deviations to the Born-Oppenheimer approximations.

* In the ISM, Ortho and Para H, are effectively different molecules. The
distinction extends to all molecules that contain H, radicals.

 Rovibrational transitions between an upper level ! and a lower level ? are
written (v; —v)O(J2) when Jo — J; = =2, (v; —v2)Q(J2) when Jo — J; = 0,
(v1 — v2)S(J2) when Jy — J; = +2

2 Photoionization and radiative recombination

2.1 Photoionization

In time-dependent perturbation theory, the rate of transition between two states,
i — f,1is:

dr;
tf hc3m2 Z/wfz <Z5f|€ € - i) |* d9,

where N (k:) is the occupation number of photons in the state corresponding to k,
with frequency vy;.

In a photoionization process the final states f belong to the continuum. The
Born approximation neglects the influence of the ion on |¢), and for a description
of the continuum we adopt a hard box normalization, with a size L — oo. With
1 corresponding to the fundamental state of the hydrogen atom, direct integration
yields (Shu I, 23):

4
APy _ 51T ) (hh () @

dt — 3Vhm2c3 measy

where NV (w) = [ dQN (&

“the requirement that the wave function be antisymmetric
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The rate of absorption of ionizing photons with frequencies in the range [v, v+ V]
is dNy df;;f , where dN; is the number of free states in the corresponding range of

energies,

Vv
de = Félﬂ— k’g dk?e,
(A

where kz refers to the free electron. Conservation of energy, £y = hw — E;, and

hk. = \/2M.Ey, yield k.dk. = F=dw.
The cross-section of ionization is defined through

N (77) N AT d3w
4mn“dn, with v = G (8)

Pidef =t aif(w)c

Comparing Eq.[8|and Eq.[7]allows the identification of o (v):
a(v) < vg(v),

where g(v) is a Gaunt factor, g(v) oc ¥~'/2, in the Born approximation, which is
valid far from the ionization edge v,. g, ~ 1 in the vicinity of v, where the free-
particle approximation breaks down.
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2.2 Radiative recombination

Photoionization and its inverse process, radiative recombination, are related by
the Einstein - Milne relations (e.g. Osterbrock, Al; Shu 1,75; Spitzer p104). The
detailed balance between photon absorptions with frequency v and electron-ion re-
combinations with relative velocity v is

B,
nx a,,47rﬁ dv = nx+nevo(v) f(v)dv + nx+neos(v)Byuf(v)dv,

where %mv2 + hvp = hv, and where f(v) is the Maxwellian integrated over angles.
We get (tarea) that oy = o /(2h13/c?), and

( ) g h2 1/2
o(v) = ——==ay,
g+ m2c2v?
where ¢ and g, are the degeneracies of X and X in their fundamental levels. 18
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