.2

Part V

Radiative Transitions

Contents

V			
1	Atomic/molecular coupling with radiation		
	1.1	Interaction with electromagnetic radiation	
	1.2	Bound-bound transition probabilities and cross-sections	
	1.3	Oscilator strength	
	1.4	Relationship with Einstein coeficients	
	1.5	Natural line width	
	1.6	Selection rules	
	1.7	Selection rules – H_2	
2	Photoionization and radiative recombination		
	2.1	Photoionization	
	2.2	Radiative recombination	

1 Atomic/molecular coupling with radiation

1.1 Interaction with electromagnetic radiation

The coupling term between charged particles and the electromagnetic field, $\vec{p_i} \cdot \vec{A}(\vec{k} \cdot \vec{x} - wt)^1$, can be expressed through an expansion in $\vec{k} \cdot \vec{x}$ as $H_{\rm int} = H_{\rm d} + H_{\rm M} + H_{\rm Q}$ (see Shu I,24), for which

$$H_{\rm d} = -\vec{E} \cdot \vec{d} \, ({\rm zeroth \, order})$$

where, for a molecule, $\vec{d} = \vec{d}_{\rm el} + \vec{d}_{\rm nuc}.$

$$H_{\rm M} = -\vec{B} \cdot \vec{M}$$
 (first order)

where the magnetic dipole moment $\vec{M} \propto \vec{L}$, and

$$H_{\rm Q} = -\frac{e}{6} \vec{\nabla} \vec{E} : (3\vec{x}\vec{x} - |\vec{x}|^2 \mathbb{I})$$
 (also order one).

In general $H_{\rm M} > H_{\rm Q}$.

when substituting $\vec{p} \to \vec{p} - \frac{q}{c}\vec{A}$, and neglecting terms in A^2 (OK for the ISM) see Shu I, 21

1.2 Bound-bound transition probabilities and cross-sections

In time-dependent perturbation theory, the rate of radiative excitations $i \to f$ is (Fermi's golden rule):

$$\frac{dP_{if}}{dt} \propto \mathfrak{N}(\omega_{if}) \left| \langle \phi_f | H_{\text{int}}(\omega) | \phi_i \rangle \right|^2.$$

In a cubic box where the ocupation number of state \vec{n} is \mathfrak{N} , the density of states is $d^3\vec{n} = V d^3\omega/(2\pi c)^3$, with a volume $V \to \infty$.

The absorption cross-section σ_{if} derives from $P_{if}=N_f/N_i\propto \#$ of absorbed photons ²:

$$P_{if} = \int d^3\vec{n} \, \frac{\mathfrak{N}(\vec{n})}{V} c \, t \, \frac{\sigma_{if}}{v} \Rightarrow \frac{dP_{if}}{dt} = \int_0^\infty \frac{\sigma_{if}}{v} \, c \, \mathfrak{N}(\omega) \, \frac{4\pi\omega^2}{(2\pi)^3 c^2} d\omega$$

Identifying (see Shu I, 22, 23), we obtain

$$\sigma_{if} \propto |\langle \phi_f | H_{\text{int}}(w) | \phi_i \rangle|^2 \delta(\omega - \omega_{if}).$$

1.3 Oscilator strength

For the electric dipole Hamiltonian, one gets

$$\sigma_{if} = \frac{4\pi^2}{3\hbar c} \left| \langle \phi_f | \vec{d} | \phi_i \rangle \right|^2 \delta(\omega - \omega_{if}),$$

which is usually expressed in terms of the oscilator strength f_{if} ,

$$\sigma_{if} = \frac{\pi e^2}{m_e c} f_{if} \delta(\nu - \nu_{if}), \text{ with } f_{if} \equiv \frac{4\pi m_e}{3e^2 \hbar} \nu_{if} \left| \langle \phi_f | \vec{d} | \phi_i \rangle \right|^2.$$

For a single electron with position \vec{x} ,

$$f_{if} = \frac{2m_e(\omega_{if}\langle f|\vec{x}|i\rangle)^2}{3\hbar w_{if}},$$

which is roughly the ratio between the vibrational potential energy of the electron and that of the radiated photon.

.5

1.4 Relationship with Einstein coeficients

The equation of detailed balance,

$$n_i B_{if} J_{\nu_{if}} = n_f A_{fi} + n_f B_{fi} J_{\nu_{fi}},$$

²note optically thin case: $dN_f = -\Gamma N_f dt + \frac{dP_{if}}{dt} N_i dt$.

and the LTE relationships,

$$\frac{n_f}{n_i} = \frac{g_f}{g_i} \exp(-\frac{h\nu_{if}}{kT})$$
, and $J_{\nu} = B_{\nu}(T)$, lead to

$$A_{fi} = \frac{g_i}{q_f} (2h\nu^3/c^2) B_{if}, \qquad B_{fi} = \frac{c^2}{2h\nu^3} A_{fi} = (g_i/g_f) B_{if}.$$

• The rate of stimulated excitations is related to the oscilator strength using the requirement

$$n_i B_{if} J_{\nu_{if}} = \int d\nu \int d\Omega \sigma_{if} n_i \frac{J_{\nu}}{h\nu} = \int d\nu 4\pi \sigma_{if} n_i \frac{J_{\nu}}{h\nu} \tag{1}$$

• Therefore,

$$B_{if} = \frac{4\pi^2}{h\nu} \frac{e^2}{m_e c} f_{if}.$$
 (2)

.6

8.

.9

1.5 Natural line width

- We consider an atom in state i, subjected to radiation with frequency ω_{ji} , corresponding to the energy interval with a final state f.
- The wave function of the target can be expanded as

$$|\phi\rangle = \sum_{j} c_{j} |\phi_{j}\rangle. \tag{3}$$

• Denoting $\Gamma = A_{ji}$, the probably amplitude for state f satisfies

$$\frac{d|c_f|^2}{dt} = -\Gamma|c_f|^2. \tag{4}$$

• In terms of the amplitude coefficients, Fermi's golden rule should be modified to account for spontaneous decay:

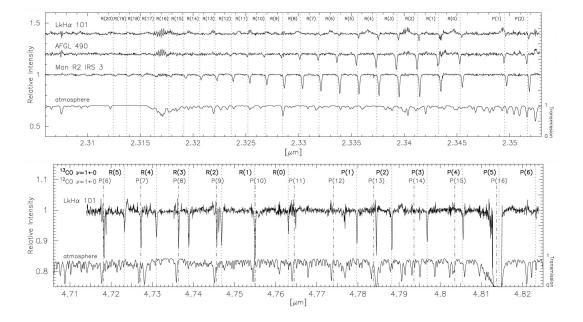
$$\dot{c}_f = -i\hbar^{-1} \langle \phi_f | H_\alpha^{\text{abs}} | \phi_i \rangle e^{i(\omega_{fi} - \omega)t} - \frac{\Gamma}{2} c_f.$$
 (5)

- We can solve Eq. 5 recognizing $e^{\Gamma t/2}$ as an integrating factor.
- After taking the modulus, in the limit $t \to \infty$,

$$|c_f(\infty)|^2 = \hbar^{-2} \frac{\left| \langle \phi_f | H_\alpha^{\text{abs}} | \phi_i \rangle \right|^2}{(\omega_{fi} - \omega)^2 + (\Gamma/2)^2}.$$
 (6)

.11

1.6 Selection rules


- Electric dipole
 - atoms: $\Delta l = 1$, $\Delta m = 0$.
 - molecules:
 - * vibrational-rotational transitions, or rovibrational, $\Delta J=\pm 1, \Delta m=0, \Delta v=\pm 1,$ allowed when $\Lambda\neq 0, \Delta J=0^3.$
 - * electronic transitions, $\Delta \Lambda = 0, \pm 1, \Delta S = 0$
 - * electronic-vibrational-rotational transitions (i.e. *vibronic* transitions): $\Delta J=0,\pm 1,\ \Delta m=0,\pm 1$ and $\Delta J\neq 0$ if $\Lambda=\Delta \Lambda=0$ and if J=0.

$$\Delta J = \left\{ \begin{array}{l} +1 \ \rightarrow \ \text{R branch} \\ 0 \ \rightarrow \ \text{Q branch} \\ -1 \ \rightarrow \ \text{P branch} \end{array} \right.$$

- magnetic dipole, atoms: $\Delta l = 0, \Delta m = 0, \pm 1.$
- electric quadrupole, atoms: $\Delta l = 0, \pm 2, \, \Delta m = 0, \pm 1, \pm 2$, rotational transitions in molecules $\Delta J = 0, \pm 1, \pm 2$.

CO

Subaru - IRCS + echelle & X-disperser (Goto et al. 2003, ApJ, 598, 1038)

 $^{^3}$ Lambda doubling, two states $\pm\Lambda$ for each J. Example: hyperfine structure of the OH Λ doublet at \sim 1.7 GHz.

1.7 Selection rules – H₂

- In the case of H_2 we have $\vec{d}=0$. Moreover the fundamental state is $\vec{L}=0$, and $\vec{S}=0$, so that $\vec{M}=0$ and all low-energy transitions for H_2 are quadrupolar.
- Note that the antisymmetry of the nuclear wave function implies that the state J=1 (J odd) is triplet (**Ortho** H_2 , $I=S_{\rm nuclear}=1$), while J=0 (J even) is singlet (**Para** H_2 , I=0).
- In H_2 the exclusion principle ⁴ forbids $\Delta J = 1$, unless the transition involves a change in spin state. The spin transitions can only occur through the exchange of protons in collisions. Radiative transitions between spin states can occur, but at a rate corresponding to the quadrupolar transitions in the Hamiltonian of the deviations to the Born-Oppenheimer approximations.
- In the ISM, **Ortho** and **Para** H₂ are effectively different molecules. The distinction extends to all molecules that contain H₂ radicals.
- Rovibrational transitions between an upper level 1 and a lower level 2 are written $(v_1-v_2)O(J_2)$ when $J_2-J_1=-2$, $(v_1-v_2)Q(J_2)$ when $J_2-J_1=0$, $(v_1-v_2)S(J_2)$ when $J_2-J_1=+2$.

2 Photoionization and radiative recombination

2.1 Photoionization

In time-dependent perturbation theory, the rate of transition between two states, $i \rightarrow f$, is:

$$\frac{dP_{if}}{dt} = \frac{e^2}{hc^3m_e^2} \sum_{\alpha=1}^2 \int \omega_{fi} \, \mathcal{N}_{\alpha}(\vec{k}) \, |\langle \phi_f | e^{i\vec{k}\cdot\vec{x}} \vec{e}_{\alpha} \cdot \vec{p} | \phi_i \rangle|^2 \, d\Omega,$$

where $\mathcal{N}(\vec{k})$ is the occupation number of photons in the state corresponding to \vec{k} , with frequency ν_{fi} .

In a photoionization process the final states f belong to the continuum. The Born approximation neglects the influence of the ion on $|\phi_f\rangle$, and for a description of the continuum we adopt a hard box normalization, with a size $L \to \infty$. With i corresponding to the fundamental state of the hydrogen atom, direct integration yields (Shu I, 23):

$$\frac{dP_{if}}{dt} = \frac{8\pi e^2 a_Z^3}{3V\hbar m_s^2 c^3} \mathcal{N}(\omega) (\hbar k_e)^2 \left(\frac{\hbar}{m_e a_Z^2}\right)^4,$$
 (7)

where $\mathcal{N}(\omega) = \int d\Omega \mathcal{N}(\vec{\omega})$.

.14

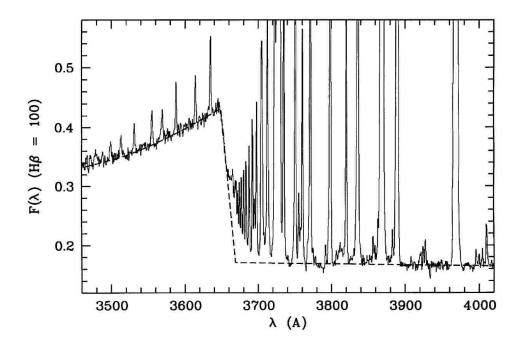
.12

⁴the requirement that the wave function be antisymmetric

The rate of absorption of ionizing photons with frequencies in the range $[\nu, \nu + \nu]$ is $dN_f \frac{dP_{if}}{dt}$, where dN_f is the number of free states in the corresponding range of energies,

$$dN_f = \frac{V}{2\pi^3} 4\pi \ k_e^2 \ dk_e,$$

where $\vec{k_e}$ refers to the free electron. Conservation of energy, $E_f = \hbar\omega - E_i$, and $\hbar k_e = \sqrt{2M_e E_f}$, yield $k_e dk_e = \frac{m_e}{\hbar} d\omega$.


The cross-section of ionization is defined through

$$P_{if}dN_f = t \,\sigma_{if}(\omega)c \,\frac{\mathcal{N}(\vec{n})}{V} \,4\pi n^2 dn, \text{ with } \frac{d^3\vec{n}}{V} = \frac{d^3\omega}{(2\pi)^3 c^3}.$$
 (8)

Comparing Eq. 8 and Eq. 7 allows the identification of $\sigma(\nu)$:

$$\sigma(\nu) \propto \nu^{-3} g(\nu),$$

where $g(\nu)$ is a Gaunt factor, $g(\nu) \propto \nu^{-1/2}$, in the Born approximation, which is valid far from the ionization edge ν_{\circ} . $g_{\nu} \approx 1$ in the vicinity of ν_{\circ} , where the free-particle approximation breaks down.

.15

.16

2.2 Radiative recombination

Photoionization and its inverse process, radiative recombination, are related by the Einstein - Milne relations (e.g. Osterbrock, A1; Shu I,75; Spitzer p104). The detailed balance between photon absorptions with frequency ν and electron-ion recombinations with relative velocity v is

$$n_{\rm X} a_{\nu} 4\pi \frac{B_{\nu}}{h\nu} d\nu = n_{\rm X} + n_e v \sigma(v) f(v) dv + n_{\rm X} + n_e \sigma_2(v) B_{\nu} v f(v) dv,$$

where $\frac{1}{2}mv^2 + h\nu_T = h\nu$, and where f(v) is the Maxwellian integrated over angles. We get (tarea) that $\sigma_2 = \sigma/(2h\nu^3/c^2)$, and

$$\sigma(v) = \frac{g}{g_+} \frac{h^2 \nu^2}{m^2 c^2 v^2} a_{\nu},$$

where g and g_+ are the degeneracies of X and X^+ in their fundamental levels.