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Introduction

• References:
Tielens 2005 Draine & Mc Kee, 2003, ARA&A, 31, 373
• Shocks are irreversible processes: ordered kinetic energy from stellar winds,

supernova shock waves, etc ..., is converted into heat and chemical processes,
with a concomitant entropy increase.
• Shocks are at the origin of the large-scale structure of the ISM and of the

hot-shocked plasma phase (∼ 106 K).
• There are two broad types of shocks: J (jump) shocks and C (continuous)

shocks. J-types are strong shocks that occur in all phases of the ISM, while
C shocks are found in (magnetised) molecular clouds. The main difference
between C and J shocks is the shock velocity. The minimum velocity for
J-shocks is ∼40 km s−1.
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1 J shocks

• In shocks the preferred reference system is that of the shock itself: the preshock
gas flows towards the shock at the shock velocity vs, while the postshock gas
moves with the shock front, so has ∼ 0 velocity relative to the shock.
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Jump conditions

• J shocks are supersonic discontinuities. The speed of the shock can be ex-
pressed with the Mach number, M = vs/cs, where cs =

√
∂ p/∂ρ|S is the

sound speed. For an adiabat P ∝ ργ and the equation of state P = ρkT/µ ,
with γ = 5/3, cs =

√
5/3kT/µ .

• The fluid equations of motions take on simple forms when integrated across
sharp discontinuities. These are the Rankine-Hugoniot jump conditons, which
express the conservation of mass, momentum and energy flux.
• The flux of any scalar quantity per unit mass φ is φρv. Examples:

– mass flux is ρv,

– momentum flux is (ρv)v (v is the momentum per unit mass),

– kinetic energy flux is (ρv)(v2/2),

– internal energy flux (ρv)(u/ρ), where u = ∑i(ui + niIi) is the internal
energy per unit volume, and Ii is the binding energy of specie i, with
number density ni.
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Rankine-Hugoniot conditions

ρ0v0 = ρ1v1, mass, (1)
ρ0v2

0 +P0 = ρ1v2
1 +P1, momentum, (2)

1
2

v2
0 +

u0

ρ0
+

P0

ρ0
=

1
2

v2
1 +

u1

ρ1
+

P1

ρ1
, energy. (3)
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Eq. 3 derives from equating P0v0−P1v1, the work done by the shock per unit
time, to the net energy flux through the shock: E1−E0, where

Ei = ρivi

(
1
2

v2
i +

ui

ρi

)
.

Note Eq. 3 expresses energy conservation for an adiabatic shock - without radiative
losses, which are important for the evolution of the shock. .6

Solution of the jump conditions
For an ideal gas in an adiabatic shock, manipulation of the jump conditions gives

(tarea):

P1

P0
=

2γM2

γ +1
− γ−1

γ +1
, (4)

ρ0

ρ1
=

γ−1
γ +1

+
2

γ +1
1

M2 , (5)

v2
i =

1
ρ2

i
(P1−P0)

(
1
ρ0
− 1

ρ1

)−1

. (6)

For strong shocks, M� 1,

ρ1

ρ0
=

γ +1
γ−1

( = 4 for an ideal monatomic gas), (7)

P1 =
2

γ +1
ρ0v2

0 (=
3
4

ρ0v2
0), (8)

v1 = v0/4. (9)
.7

Temperature rise at the shock front
For an ideal gas, Eq. 8 gives

T1 =
2(γ−1)

γ +1
µv2

0
k

=
3
16

µ

k
v2

0, for a monatomic gas.

In a cosmic mix with a He abundance of -1 dex, µ/mp = ∑nimi/∑ni ≈ 0.56 for
fully ionised gas , ≈ 1.3 for neutral gas, and ≈ 2.4 for molecular gas.

Thus, independently of the preshock phase,

T1 ≈
µ

mp
2.5 105

(
v0

100 km s−1

)2

K

.8
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Downstream conditions
Away from the (idealised) adiabatic shock front and into the postshock region,

radiative losses decrease the temperature.
The flux of radiative energy Frad varies as

d
dz

Frad = n2
Λ−nΓ−4πκJ,

where z is a coordinate along the shock propagation, n is number density, Λ and Γ

are the cooling and heating rates, respectively, and J is the average intensity from
other regions in the shock.

At some distance from the shock front, in a region which we may label as “2”, the
shocked gas will eventually relax to its preshock conditions, in region “0”. We may
apply the jump conditions to the 0–2 discontinuity, with an isothermal gas (γ = 1),
so that Eq. 5 gives

ρ2/ρ1 = M2.

We see shock waves are very compressive! .9

However, at very high temperatures the cooling rate is dominated by recombina-
tions, with a rate Λ ∝

√
T , so that the cooling time scale, τcool = kT/(nΛ(T )) ∝

√
T .

Hence, if the shock is very strong M � 1, the postshock temperature can be
arbitrarily high, and τcool correspondingly long - and possibly even longer than the
lifetime of the shock (or the dynamical time scale). If so then the postshock region
never relaxes, as is the case of the ISM hot-shocked by SNRs. .10

Precursor ionisation
In fast shock, if the postshock temperature reaches ∼ 105 K, then H I is col-

lisionally ionised and radiates in the Lyman continuum. The correspond ionising
radiation overtakes the shock front and ionises the preshock gas.

.11
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J shock chemistry

• Shocks lead to dissociation/ionisation and eventually to molecule formation
in the relaxation zone behind the shock front.
• The shock chemistry is radically different from the ion-molecule chemistry

that occurs in quiescent dark clouds.
• Collisional H2 dissociation occurs for gas at > 105 K, or shock velocities

higher than 50 km s−1.
• In the postshock region, with elevated temperatures, the chemistry taps on the

gas internal energy to generate molecules via endothermic reactions. The key
players in this chemistry are H, H2 and O (assuming a cosmic mix with O>C).

– If H2 is not dissociated, then reactions with O leads to the formation of
H2O, so that the most abundant molecules are H2, H2O, CO, and O2.
Important trace molecules, characteristic of non-dissociating shocks, are
CH+, SiO, H2S.

– If H2 is dissociated, loose H atoms collisionally dissociate molecules so
that most of the gas is atomic (as expected from ∼ 1000 K gas).

.12

J shock spectra

• The spectra of non-ionising shocks reflect their chemistry.
• Ionising shocks lead to very hot, 106 K, gas and bright in X-rays. If the density

is low, then the cooling timescale exceeds the shock lifetime, and columns are
low, so that not much emission is found at UV-optical-IR wavelengths.
• If driven into dense media, ionising shocks may relax in the post-shock region,

which is very compressed. The columns are then high enough for the detection
of britght optical/IR collisionally excited fine structure lines.
• Since the relaxation zones dominate by mass the fully-ionised regions, the

spectra of ionising shocks is dominated by low-excitation species, which are
normally found in higher-ionisation stages in H II regions.

.13

• Two (among many) popular diagnostics for shock excitation versus photioni-
sation are:

– The ratio of [N II] λλ6548,6584 to Hα λ6565 - [N II] is not as bright in
H II regions than in shocks

– The ratio [Fe II] 1.644µm / Brγ 2.166µm is high in shocks, because in
H II regions Fe would be found in higher ionisation stages.

.14
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2 C shocks

• For interstellar conditions, the magnetic field is “frozen” to matter. The mag-
netic flux Φ =

∫
S
~B.~dS, where S is some surface tied to the fluid, is constant.

• When the gas is compressed perpendicular to ~B, the field intensity increases
so that Φ = SB is kept constant. As a result

B≈
√

n/1 cm−3 µG. (10)

• Thus magnetic field intensities in dense molecular gas are high, and we must
modify the shock equations to include the coupling of the magnetic field to
the residual ionisation induced by cosmic ray ionizations.

.15

• Cosmic ray ionisation predicts an ionisation fraction of x ≈ 10−8− 10−7, as
observed (e.g. Wootten et al., 1979, ApJ, 234, 876).
• Most of the negative charge in molecular gas is found in PAH anions - they

sweep out all the e− ejected by the cosmic ray ionisation of H2.
• Magnetised shocks are thus 2 fluid shocks: the ions, which directly couple to

the magnetic field, and the neutrals, which lag behind the ions and are coupled
to the field by collision and frictional drag with the ions.

.16

• The linearisation of the hydromagnetic equations shows that magnetised me-
dia sustain a wide variety of magnetosonic waves (an extension of sound
waves).
• The type of Alfvén waves that is most relevant to shocks are transversal os-

cilations of the magnetic field lines, as in vibrating strings. Their speed is
vA = B(4πρi)

−1/2, where ρi is the mass density of the ion fluid.
• The Alvén waves propagate the shock signal upstream, compressing the ions

and dragging the neutrals. The wave energy is dissipated by ion-neutral fric-
tion, which raises the temperature.
• The shock front is merged with the relaxation layers. Thus magnetic shocks

are continuous (C-shocks).
.17

Structure of C shock: shock width

• The characteristic length over which the neutral fluid velocity changes is L≈
vd/(nikL), where vd = vi− vn is the ion-neutral drift velocity (which can be
of the order of the shock velocity since the ions are first set in motion, and
subsequently drag the neutrals - vd values can be as high as ∼30 km s−1), and
kL = 〈wσin〉 ≈ 10−7cm3 s−1 is the Langevin rate (the number of ion-neutral
collisions per ion per unit time, where w is ion-neutral relative velocities in
the frame of the neutrals).
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• As for the calculation in J-shocks, the maximum compression of ions is (ni/ni,0)≈
vs/vA, where vs/vA is an extension of the Mach number and ni,0 is the pre-
shock ion density. A working number for the ion-neutral drift velocity is half
the shock velocity. Thus

L≈ vA

2ni,0kL
.

• Assuming Eq. 10, we obtain L≈ 1.1 105/(ni,0kL)≈ 1015 cm if the pre-shock
proton density is 105 and the ionisation fraction is x∼ 10−8.

.18

Structure of C shock: thermal balance

• Heating comes from the mechanical energy of the shock wave, hence

nΓ≈ ρ0v2
s︸︷︷︸

shock kinetic energy density

shock timescale︷ ︸︸ ︷
(vs/L) .

• Shock cooling comes from H2 rotational lines: n2Λ(T )= 2.5 10−33nT 3.82 erg cm−3 s−1.
• Energy balance then gives the postshock temperature, T ≈ 1000−3000 K for

a 10 km s−1 shock with L = 1015 cm and a factor of two density compression.
.19

Structure of C shock: detailed calculations
From Kaufman & Neufeld, 1996, ApK, 456, 611:

.20
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3 Supernova Remnants

References:

• Lequeux, “The interstellar medium” (like Spitzer 1978).
• Rohlfs & Wilson “Tools of Radioastronomy” (emphasis on the synchrotron

diagnostic).
• Tielens.

.22

• There are three broad phases in the expansion of a SN shock wave:

1. a phase of free expansion, where the density of the ejected material is
much larger than the density of the surrounding medium. This phase
ends ∼60 yr after the SN event. It has been studied extensively in extra-
galactic SNe.

2. a phase of adiabatic expansion, where radiative losses are negligible, and
where the temperature progressively cools through the work applied on
the swept up ISM.
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3. an isothermal phase, where the remnant’s energy is lost by radiation,
and which ends when the SNR shell velocity is of order of the velocity
dispersion in the ISM (∼ the sound speed, or 10 km s−1 in the diffuse
ionised ISM at 104 K).

• SNRs of all types inject ∼ 1050 erg through a shocked shell driving into the
ISM. SNe Ib/II may lead to Plerions: shell remnants filled with relativistic gas
excited by a central pulsar.

.23

SNRs examples: Vela1

IRAS 100µm. ROSAT broad band. .24

SNRs examples: Vela2

1G263.806−03.371
2Distance to Vela is ∼250 pc→ 1 deg ∼ 5 pc
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Hales et al. 2004, ApJ, 613, 977.
Bock et al., 1998, ApJ, 116, 1886.
Blondin et al. 2001, ApJ, 563, 806.

.25

SNRs examples: PWNe

Helfand et al. (2001, ApJ, 556, 380) note that the ages of the Vela X (left) and Tau A
(right) PWNe are very different (Vela X is∼ 104 yr, Blondin et al.). The circles have
equal radii of ∼0.05 pc. The Vela X PSR radiates as a 1.7 106 K blackbody 10 km
in radius, and the diffuse emission is synchrotron. That the arcs are not complete
rings may be due to the head-light effect in the outflowing relativistic expansion. .26
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SNR free-expansion phase

• The SN event ejects the stellar envelope at ∼ 104 km s−1.
• For fully ionised gas the mean free path involves the Coulomb cross section

of protons:

l = m2v4/(Z2ne4 lnΛ), with Λ = 1.3 104T 3/2/n1/2
e . (11)

• At v ∼ 104 km s−1, the Coulomb cross section is so low that l ∼ 400 pc for
protons, so that they would escape the envelope.
• But a small magnetic field of only ∼ 1µ G confines the protons to Larmor

radii of only ∼ 10−8 pc. Thus the freely-expanding SNRs are MHD shocks.
• The free-expansion phase ends when the SNR expansion has swept up enough

mass to slow down due to momentum conversation.
This occurs when when the mass swept by the envelope, 4

3πr3
s ρ0, where ρ0

is the surrounding density, is similar to the mass of the ejecta, Mej. For n0 ≈
1 cm−3 and Mej = 0.25 M� (type Ia) we have rs = 1.3 pc, which is reached
only 60 yr after the explosion if the expansion velocity is 20000 km s−1.

.27

SNR adiabatic (Sedov) expansion phase

• Adiabatic expansion means that the postshock temperature is so high that ra-
diative losses are negligible. The mechanical SN energy E is constant.
• Sedov (1959) showed that adiabatic expansion is self-similar: its macroscopic

parameters are related by power-laws (see Chap. A). In the Sedov phase,

– the fraction of E that is thermal is K1E, with K1 = 0.72,

– the ratio K2 = P1/〈P〉 = 2.13, where P1 is the pressure immediately be-
hind the shock, and 〈P〉 is the average pressure inside the spherical rem-
nant.

.28

Once the expansion slows down to, say, 1000 km s−1, the magnetic energy den-
sity is negligible compared to the thermal energy density and we can use the J-shock
results.

• With the above results from Sedov, and since for an ideal gas 〈P〉= 2
3K1E 3

4πr3
s
,

we have P1 = KE/(2πr3
s ), where K = K1K2.

• In the limit of a stron shock, M � 1, the Rankine-Hugoniot relations give
v0 =

√
4P1
3ρ0

, and since the shock velocity vs ≈ v0, we obtain

vs =

√
2KE
3πr3

s
. (12)

.29
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• Integrating Eq 12,

rs =

(
5
2

)2/5( 2KE
3πρ0

)1/5

t2/5,

= 0.26
( nH

cm−3

)1/5
(

t
yr

)2/5( E
4 1050 erg

)1/5

pc.

• again, with the strong shock conditions Eq. 7 to 9,

T1 =
3

16k
µmHv2

s (13)

= 1.5 1011
( nH

cm−3

)−2/5
(

t
yr

)−6/5( E
4 1050 erg

)1/5

K.

• we see that the T increases towards the centre, which reflects the neglect of
radiative losses, and the fact that vs was higher when the central layers were
overtaken by the shock.

.30

Adiabatic expansion: thermal conductivity
• However, in the absence of strong magnetic fields, the Coulomb mean free

path l (Eq. 11) is so high that diffusion is important, with thermal conductivity

κ =
5
3

kT
〈vT 〉

l n
3k
m
, with 〈vT 〉= (3kT/m)1/2. (14)

• Solving for the thermal balance including the heat flux Q = −κ∇T leads to
uniform temperatures in the SNR interior (Chevalier 1975, ApJ, 198, 355):

T ≈ 1.4 1010
( n0

cm−3

)−1
(

rs

pc

)−3 E
1051 erg

K. (15)

• However, a finite magnetic field exists inside the remnant, so that the mean
free path and the conductivity κ are reduced. The real temperature inside the
remnant thus lies in between Eq. 13 and Eq. 15.

.31

Adiabatic expansion: reverse shock
• An more accurate (numerical) treatment shows that the transition between free

and adiabatic expansion generates a reverse shock.
• The reverse shock propagates inwards, towards the centre of the ejected mat-

ter.
• Qualitatively, the reverse shock stems from the pressure increment behind the

shock front. The finite radiative losses lower the temperature inwards and
away from the shock front. Thus the sound speed decreases inwards, and the
pressure perturbation right behind the (outer) shock turns into an inner, or
reverse, shock.
• After the passage of the reverse shock the SNR expansion becomes truly adi-

abatic. .32
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Isothermal expansion

• When the postshock temperature falls below T1 ≈ 106 K, metals start recom-
bining, and radiative cooling is strongly enhanced through line emission from
ions of C, N and O.
• Energy is no longer conserved - rather, the expansion of the remnant is con-

troled by momentum conversation.
• The transition into the isothermal phase occurs at an age of ∼ 104 yr, for

an ambient density n0 ∼ 1 cm−3, a shell radius ∼ 15 pc, and an expansion
velocity of 85 km s−1.

.33

• Momentum conservation requires that Mvs is constant, where M is the ISM
mass swept-up by the remnant:

4
3

πr3
s ρ0vs = constant.

• Integration then gives

rs = rrad

(
8t

5trad
− 3

5

)1/4

,

where rrad and trad are the radius and age of the remnant at the start of the
isothermal phase.

.34

Final mixing with the ISM

• When the age of the remant is of order 106 yr, its radius will be ∼40 pc, and
vs∼ 10 km s−1 - comparable to the sound speed of 104 K ‘warm-ionised’ ISM
with n0 = 1 cm−3. Thus the remnant will no longer be supersonic, and will
mix with the ISM.
• The efficiency η for the input of mechanical SN energy E into the ISM is

η =
1
2

M f v2
f /E,

where M f and v f are the final mass and velocity of the remnant. Lequeux
(2005) shows that η ≈ 0.03.

.35

4 Ionization fronts

Dynamics of H II regions
References:

• Lequeux, 2005, “The interstellar medium”.
• Tenorio-Table & Bodenheimer, 1988, ARA&A, 26, 145
• Kaplan & Pikelner, 1970, “The interstellar medium”.
• Tielens, 2005.

.36
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Given an instantaneous proton density np(t), ionisation equilibrium applied to a
whole H II region gives its size, the Strömgren radius:

rS =

(
3π

4
S

nenpα2

)1/3

, (16)

where S is the stellar-photon-luminosity in the Lyman continuum.
However the ionised gas is at a higher pressure than the surroundings. If the

proton density is uniform, in the ionised region number densities are at least a factor
of 2 higher than in neutral gas, and temperatures are∼ 104 K against∼ 10−100 K in
the atomic/molecular gas. Thus H II regions are bound to expand, and their densities
will decrease.

We will first quantify the dynamics of the ionisation front, and then consider the
pressure wave propagating in the neutral gas as a precursor shock. .37

The ionisation front
In plane-parallel geometry, the equations describing the inertia of the front are:

ρ0v0 = ρ1v1, mass continuity (17)
ρ0v2

0 +P0 = ρ1v2
1 +P1, momentum equation. (18)

With

Pi = ρikT/(µimH), and, (19)

ci =
√

γkT/(µimH), the sound speed, (20)

we see that Pi = c2
i ρi/γ . .38

We can combine the above equations to give (tarea)

ρ1

ρ0
=

1
2

c2
0

c2
1

[
(M2 +1)±

√
(M2 +1)2−4M2C2

1
C2

0

]
, (21)

where M = v0/c0 is the Mach number of the ionisation front. The condition that the
square root be real requires (tarea)

M2−2M
c1

c0
+1 > 0, (22)

so that the only possible values for M are M < MD or M > MR, where

MR =
c1

c0

(
1+

√
1−

c2
0

c2
1

)
, (23)

MD =
c1

c0

(
1−

√
1−

c2
0

c2
1

)
. (24)

.39
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Since T0� T1, c0� c1 and

MR ≈ 2c1/c0, (25)
MD ≈ c0/(2c1) (26)

For either the ‘R’ or ‘D’ critical solutions, we have M2 + 1 = 2Mc1/c0, so that
Eq. 21 gives

ρ1

ρ0
= M

c0

c1
=

v0

c1
. (27)

The mass continuity equation then gives

v1 = ρ0v0/ρ1 = c1. (28)

We see that for the critical values of M the downstream velocity of the gas is
equal to the sound speed c1. We will now turn to a detailed analysis of the critical
solutions. .40

In plane-parallel geometry, the mass continuity equation gives

ρ0v0 = ρ1v1 = J, (29)

where

J = µ0mHS
e−τ

4πr2
s

(30)

is the flux of hydrogen atoms through the front, and τ = ndσdrs is an average Lyman-
continuum opacity mostly due to dust inside the H II region (in the on-the-spot ap-
proximation the contribution of opacity from residual atomic hydrogen is compen-
sated by recombinations). .41

The momentum-conservation equation,

ρ0v2
0 +P0 = ρ1v2

1 +P1, (31)

can be written

ρ0

(
kT0

µ0mH
+ v2

0

)
= ρ1

(
kT1

µ1mH
+ v2

1

)
, (32)

where we have neglected radiation pressure (¿ ojo?). .42

We will assume that the ionised gas behind the ionisation front expands freely
into the H II region, at a velocity close to the sound speed (or close to the thermal
rms speed) - this is exactly true for the critical ‘R’ or ‘D’ solutions:

v1 ≈ c1 =

√
γkT1

µ1mH
.
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Substitution in the mass-continuity equation (Eq. 29) gives

ρ1 = J/c1, (33)
ρ0 = J/v0. (34)

.43

With Eq. 33 and 34, and using momentum conservation, Eq. 32, we obtain (tarea)

v0 +
1
v0

kT0

µ1mH
= (γ +1)

√
kT1

γµ1mH
, (35)

whose solution for v0 is (tarea)

v0 =

√
(γ +1)2kT1

4γµ1mH
±

√
(γ +1)2kT1

4γµ1mH
− kT0

µ0mH
. (36)

Since T0� T1,

v0 =

√
(γ +1)2kT1

4γµ1mH

{
1±
[

1− 2γ

(γ +1)2
µ1

µ0

T0

T1

]}
. (37)

.44

We see that we have two broad families of solutions, corresponding to each sign
in Eq. 37.
• For the plus sign, the factor in curled brackets {...} can be approximated to 1

for T0� T1, so that
ρ1

ρ0
=

v1

v0
=

γ +1
γ

,

so that ρ1 > ρ0. This is called a compression wave, or the R solution (R is for
rarefied gas, since the fronts meets gas of lower density).
• For the minus sign, we go to first order in T0/T1 and obtain (tarea)

ρ1

ρ0
=

v1

v0
=

1
γ +1

µ1T0

µ0T1
,

so that ρ1� ρ0. This is called a rarefaction wave, or the D solution (D is for
dense gas, since the fronts meets gas of higher density).

.45

In order to estimate the temperature in the ionised gas behind the front, T1, we
use the conservation of energy (cf. Eq. eq:energy),

ρ0v0


(u0+P0)/ρ0︷ ︸︸ ︷

γkT0

(γ−1)µ0mH
+

1
2

v2
0

= ρ0v0

[
γkT0

(γ−1)µ0mH
+

1
2

v2
0

]
− ε0J, (38)
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where ε0 is the mean energy per photoelectron (instantaneously behind the front
we neglect radiative cooling, which is important for the subsequent mixing of the
ionised gas). Using mass and momentum conservation, Eq. 29 and 32, we obtain

v2
0 =

γ +1
γ−1

kT1

µ1mH
− 2γ

γ−1
kT0

µ0mH
− ε0

mH
. (39)

We can then obtain T1 given T0 by equating Eq. 37 and 39. .46

In summary,

• D-critical fronts, ρ0 > ρ1.

T1 = γ−1
γ(γ+1)

µ1ε0
k , v0 = µ1T0

µ0T1

√
(γ−1)ε0
(γ+1)3mH

,

ρ1
ρ0

= 1
γ+1

µ1T0
µ0T1

, ρ0 = J

√
(γ+1)3

γ−1
m3

H
ε0
.

(40)

With γ = 5/33, we obtain v0≈ 0.2 km s−1, ρ1/ρ0≈ 1/100, and if T0∼ 1000 K
then T1 ∼ 3000−−6000 K. Further downstream the gas will heat to its equi-
librium value of 104 K. Note that ρ0 is fixed.

.47

• R-critical fronts, ρ0 < ρ1.

T1 = γ(γ−1)
(γ+1)

µ1ε0
k , v0 =

√
(γ2−1)ε0

mH
,

ρ1
ρ0

= γ+1
γ
, ρ0 = J

√
m3

H
(γ2−1)ε0

.

(41)

We have ρ1/ρ0 = 8/3 and v0 ∼ 26 km s−1, so that the front is supersonic.
Note that

v0 =

√
(γ2−1)ε0

mH
= ρ1v1/ρ0 = ρ1c1/ρ0 = 8/3c1,

the R front propagates at 8/3 (∼ twice) the downstream sound speed.
.48

3remember we are neglecting internal degrees of freedom, even for H2
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The precursor shock

• We see from both Eq. 40 and 41 that the upstream density ρ0 is fixed by the
ionising photon flux J and by ε0, both of which are functions of the central
star spectrum.
• ρ0 is in general different from ρISM, the ambient density in which the shock

progresses. The front is therefore preceded by a density (i.e. pressure) pertur-
bation, which travels at the sound speed set by T0.
• R-fronts are supersonic, so the precursor perturbation cannot travel away from

the front.
• D-fronts are subsonic (∼ 0.2 km s−1), so the precursor perturbation can form a

wave. Since ρ0 is fixed by J, close to the central star (or early in the evolution
of the H II region), ρ0 > ρISM.
• In D-fronts the precursor wave will form a shock since the upstream gas is

heated by the compression, so that T0 > TISM. An approximate quantitative
descriptions of the shock can be found in Spitzer (1978)

.49

Evolution of H II regions

• Turn-on phase.
An O star is suddenly turned-on in an infite and homogeneous medium, with
a constant ionising photon luminosity S. Initially, for times short compared to
the recombination timescale τrec = (nISMα2)

−1 ≈ 100 yr for nISM = 103cm−3,
all photons from the star lead to ionisation, and the star ionises a sphere of
radius r(t), such that

St =
4π

3
nISMr3(t).

This sphere expands at a velocity

dr
dt

=
1
3

(
3S

4πnISM

)1/3

t−2/3,

which at 100 yr is ∼4 103 km s−1. this phase has never been observed,
and the present description is unrealistic. This phase is an R-front since the
ionised gas is hotter and denser (factor of 2).

.50

• Approach to the Strömgren radius.
Following the turn-on phase, at timescales of order τrec we must take into
account recombination so that the radius of the R-front is given by

dr
dt

=
1

4πr2nISM

[
S− 4

3
πr3n2

ISMα2

]
,

where we have used the on-the-spot approx. The solution to this equation is

r3 = R3
S[1− exp(−nISMα2t)],

18



where RS is the Strömgren radius.
Thus the front velocity will progressively decrease until it reaches the ‘R’-
critical value, after which it will jump down to the ‘D’-critical value (some-
where close to the Strömgren radius).

.51
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