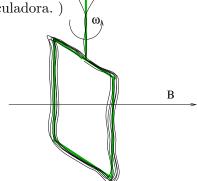
13 de Noviembre de 2008

Prof: Simón Casassus Ayudante: Felipe Benavides


(Desarrolle sus respuestas y **cuide la presentación**. Sin calculadora.)

Relaciones útiles:

$$\vec{B} = \mu \mu_{\circ} H, \quad \mu_{\circ} = 4\pi \ 10^{-7} \ \mathrm{Tm \ A^{-1}}, \qquad \vec{B} = \frac{\mu_{\circ}}{4\pi} \int \vec{j}(\vec{r'}) \times \frac{(\vec{r} - \vec{r'})}{\|\vec{r} - \vec{r'}\|} d^3 x'$$

$$\vec{\nabla} \times \vec{H} = \vec{j}_{l} \qquad \nabla \times \vec{E} = -\partial \vec{B} / \partial t$$

Fuerza de Lorentz: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$.

I Generador de corriente alterna

Consideramos un cable conductor embobinado con N vueltas en un armazón cuadrado de área \mathcal{A} , inmerso en un campo magnético uniforme y constante B_{\circ} , y que gira con velocidad angular ω , como se indica en la figura.

- 1. (2 pt) Dar el valor de la fuerza electromotriz en el embobinado si despreciamos autoinducción.
- 2. (1 pt) Compare la potencia requerida para mantener una corriente I por el embobinado, con la potencia mecánica $\omega\Gamma$ requerida para mantener el embobinado en rotación constante, en que Γ es el torque ejercido por \vec{B} .
- 3. (3 pt) Tomamos en cuenta la autoinducción del embobinado.
 - a) ¿Cómo se corrige la fem del generador si tomamos en cuenta la autoinductancia L del embobinado?
 - b) Conectamos este generador con un circuito de impedancia Z=R, real. Escriba y resuelva la ecuación del circuito.
 - c) Dé una expresión para la intensidad de corriente en el límite de altas frecuencias ($\omega \to \infty$). Comente acerca del papel jugado por la resistencia.

II Energía magnética en un resorte

Consideramos un resorte con N vueltas, de constante elástica κ , frecuencia natural ω_{\circ} , largo natural l_{\circ} , y hecho de un alambre conductor con resistencia R.

- 1. (6 pt) ¿Cuanto se alarga el resorte si aplicamos una diferencia de potencial V constante a sus extremos? (ayuda: recuerde la relación entre fuerza y energía potencial)
- 2. (+2 pt) Escriba las ecuaciones del sistema si aplicamos un voltaje alterno con frecuencia ω . ¿Cómo las resolvería?

III Inductancias mútuas

Consideramos un primer circuito LC serie (con L_1 , C_1 , intensidad I_1), acoplado por la inductancia con un segundo circuito LR serie (con L_2 , R_2 , e intensidad I_2). La inductancia mútua entre L_1 y L_2 es M. En t=0 tenemos $I_1=0$ y C_1 esta cargado con un voltaje V_1 . Calcule el voltaje en la resistencia para todo t.