Vibraciones y Ondas

2013

Simon Casassus Astronomía, Universidad de Chile http:://www.das.uchile.cl/~simon

I Mecánica de Lagrange

Il Pequeñas oscilaciones

III Ondas

.1

Parte I

Mecánica de Lagrange

- 1 Coordenadas generalizadas
- 2 Ecs. de Lagrange
- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- Cantidades conservadas
- 6 El sólido rígido

Coordenadas generalizadas

Constricciones v coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías v constantes Sistemas disipativos Teoremas de conservación para N partículas

Outline

1 Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

- Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange
- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- Cantidades conservadas
 Símetrías y constantes
 Sistemas disipativos
 Teoremas de conservación para N partículas
- 6 El sólido rígido

Coordenadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Plan



- Ecs. de Lagrange Principio de d'Alember Ecs. de Lagrange
- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- Cantidades conservadas Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas
- 6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange Principio de mínima

acción Fuerzas de

constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Sistemas constreñidos y fuerzas de reacción.

Coordenadas

- Sistema de N partículas: 3N grados de libertad {x_i}^{n=3N}_{i=1} 3 direcciones de translación por partícula: $i = (1, 2, 3,), (4, 5, 6), \cdots, (n-2, n-1, n).$
- En presencia de constricciones el # de grados de libertad es reducido por fuerzas de reacción:

$$\dot{p}_{i} = F_{i}^{a} + R_{i}, \ i = 1, \cdots, 3N,$$

con p_i i-esima componente momentum (según x_i), F_i^a fuerza aplicada y R_i fuerza de reacción.

generalizadas Constricciones v

coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Constricciones holonómicas

 Constricciones holonómicas: se pueden escribir como k ecuaciones,

$$f_i(x_1, \dots, x_n, t) = c_i, j = 1, 2, \dots, k.$$

Ejemplos: partícula constreñida a una superficie 2-D
 z = f(x, y), o a una curva x = f(s), doble péndulo planar con largos fijos (dos grados de libertad, θ₁, θ₂).

Coordenadas

generalizadas
Constricciones v

Constricciones y coordenadas generalizadas

Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Constricciones no-holonómicas

- No hay ecuación ligando los $\{x_i\}$. Ejemplo: partícula que resbala en el campo \vec{g} sobre una esfera, $r \geq R$.
- Dentro de las constricciones no-holonómicas estan las constricciones no-integrables:

$$\sum_{i}h_{i}dx_{i}=0.$$

Ejemplo: cilíndro que rueda sin resbalar.

Coordenadas

generalizadas Constricciones v

coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

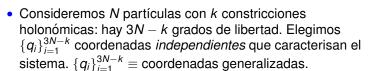
Cantidades conservadas

Símetrías v constantes Sistemas disipativos Teoremas de conservación para N partículas

El sólido rígido

.7

Coordenadas generalizadas



- Eiemplos: s en $\vec{x} = \vec{f}(s)$, θ_1 , θ_2 en el doble péndulo planar.
- Hay que especificar el tiempo en el caso de constricciones holonómicas tiempo-dependientes.
- Relación con coordinadas cartesianas:

$$x_i = x_i(q_1, \dots, q_{n-k}, t), i = 1, \dots, 3N.$$

Coordenadas

generalizadas Constricciones v

coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange Principio de mínima

acción Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Estado mecánico.

- Los $\{q_j\}_{j=1}^{3N-k}$ son variables independientes que determinan la posición de un sistema. Pero los $\{q_j\}_{j=1}^{3N-k}$ no bastan para determinar el **estado mecánico** del sistema, porque para determinar la posición en un instante siguiente se necesitan las velocidades $\{\dot{q}_j\}_{j=1}^{3N-k}$.
- La experiencia indica que dados $\{q_j\}_{j=1}^{3N-k}$ y $\{\dot{q}_j\}_{j=1}^{3N-k}$, en t, queda determinado el estado mecánico, lo cual en principio permite predecir el movimiento futuro, suponiendo que se puede resolver el problema mecánico.
- En otras palabras, dados $\{q_j\}_{j=1}^{3N-k}$ y $\{\dot{q}_j\}_{j=1}^{3N-k}$ quedan determinados $\{\ddot{q}_j\}_{j=1}^{3N-k}$.
- ⇒ Las variables independientes de un problema mecánico son

$$\{q_j,\dot{q}_j,t\},\ j=1,\cdots,3N-k.$$

Coordenadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción Fuerzas de

constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

El sólido rígido

9

Plan

Constricciones y coordenadas generalizadas Desplazamientos virtuales

- 2 Ecs. de Lagrange Principio de d'Alember Ecs. de Lagrange
- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- 5 Cantidades conservadas Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas
- 6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

1.2-Desplazamientos virtuales

Coordenadas generalizadas

Constricciones v coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

El sólido rígido

• Desplazamiento virtual $\{\delta x_i\}_{i=1}^{3N}$: infinitesimal, instantáneo (constricciones fijas), consistentes con constricciones.

$$\delta x_i = \sum_{l=1}^{n-k} \frac{\partial x_i}{\partial q_l} \delta q_l.$$

.11

Outline

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

2 Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para *N* partículas

6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

cs de Lagran

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Plan

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

2 Ecs. de Lagrange Principio de d'Alembert

- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- 5 Cantidades conservadas Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas
- 6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert

Ecs. de Lagrange
Principio de mínima

acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

2.1-Principio de d'Alembert

- "Las fuerzas de constricciones no trabajan en desplazamiento virtuales".
- ⇒ Principio de d'Alembert:

$$\sum_{i} (F_i^a - \dot{p}_i) \delta x_i = 0. \tag{1}$$

- Notar que en el caso sin constricciones, se reduce a 2nda ley de Newton.
- Notar ausencia de fuerzas de reacción.

Coordenadas generalizadas

Constricciones v coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert

Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías v constantes Sistemas disipativos

Teoremas de conservación para N partículas

Plan

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

2 Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange

- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- Cantidades conservadas Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas
- 6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert

Ecs. de Lagrange

Principio de mínima

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

2.2-Ecs. de Lagrange

 Trabajo de las fuerzas externas en un desplazamiento virtual:

$$\delta W = \sum_{i=1}^{3N} F_i \delta x_i = \sum_{\sigma=1}^{3N-k} Q_{\sigma} \delta q_{\sigma},$$

con $Q_{\sigma} \equiv \sum_{i=1}^{3N} F_i \frac{\partial x_i}{\partial q_{\sigma}}$, fuerza generalizada.

• Introduciendo la energía cinética.

$$T\equiv\frac{1}{2}\sum_{i}^{3N}m_{i}\dot{x}_{i}^{2},$$

se puede reescribir el principio de d'Alembert Ec. 1, en las Ecs. de Lagrange:

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_{\sigma}} - \frac{\partial T}{\partial q_{\sigma}} = Q_{\sigma}, \ \sigma = 1, \cdots, 3N - k. \tag{2}$$

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert

Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

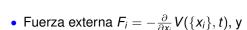
Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

El sólido rígido

.16

Fuerzas conservativas, Lagrangeano



$$Q_{\sigma} = -\frac{\partial}{\partial q_{\sigma}} V(\{q_j\}_{j=1}^{3N-k}, t),$$

• Introducimos Lagrangeano, L = T - V, y Ec. 2 da la Ec. de Euler-Lagrange:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{\sigma}} - \frac{\partial L}{\partial q_{\sigma}} = 0, \ \sigma = 1, \cdots, 3N - k. \tag{3}$$

Coordenadas generalizadas

Constricciones v coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert

Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías v constantes Sistemas disipativos Teoremas de conservación para N partículas

Ejemplos

5 HELVETIA

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert

Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades

conservadas Simetrías y constantes

Sistemas disipativos Teoremas de conservación para N partículas

- Péndulo.
- Masa en un anillo girando en un plano.
- Estabilidad, bifurcaciones: masa en un anillo girando con eje de rotacion que pasa por su centro y es paralelo a \vec{g} .

Outline

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange

- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- 5 Cantidades conservadas Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas
- 6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange Principio de mínima

acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Cálculo de variaciones

- Consideremos una función y(x), y $I \equiv \int_{x_1}^{x_2} \phi(y, y', x) dx$, donde ϕ es un funcional de y y y'.
- La función y(x) que extrema I, dado condiciones de bordes fijas en x₁ y x₂, es solución de las ecuaciones de Euler,

$$\frac{d}{dx}\frac{\partial\phi}{\partial y'} - \frac{\partial\phi}{\partial y} = 0. \tag{4}$$

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima

Fuerzas de

Fuerzas de constricción

Cantidades conservadas

Simetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Principio de Hamilton

 Similitud de Ecs. de Euler, Ec. 4, sugiere que Ecs. de Euler-Lagrange, Ec. 3, derivan de un principio variacional. Para 1-D:

$$\begin{array}{ccc}
x & \longrightarrow & t \\
y(x) & \longrightarrow & q(t) \\
y' & \longrightarrow & \dot{t} \\
\phi(y, y', x) & \longrightarrow & L(q, \dot{q}, t)
\end{array}$$

Definimos la acción

$$S = \int_{t_1}^{t_2} L dt,$$

y el principio de mínima acción arroja las Ecs. de Euler-Lagrange, Ec. 3.

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert

Ecs. de Lagrange

Principio de mínima

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Lagrangeano de la partícula libre

- Ppio. de Hamilton

 formulación fundamental de la mecánica.
- Consideraciones fundamentales en relatividad Galileanaa. conducen al Lagrangeano de la partícula libre,

$$L=\frac{1}{2}mv^2.$$

Coordenadas generalizadas

Constricciones v coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert

Ecs. de Lagrange

Principio de mínima

Fuerzas de constricción

Cantidades conservadas

Símetrías v constantes Sistemas disipativos

Teoremas de conservación para N partículas

Outline

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange

- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- Cantidades conservadas

 Símetrías y constantes
 Sistemas disipativos

 Teoremas de conservación para N partículas
- 6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange Principio de mínima

acción

Fuerzas de

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Modificación de las Ecs. de E.-L.

Tenemos k constricciones:

$$f_{j}(\{q_{\sigma}\},t) = c_{j}, \ \ j = 1,\cdots,k \ \ \Rightarrow \{q_{\sigma}\} \text{no independientes}$$

$$\delta f_{j} = \sum_{\sigma=1}^{n} \frac{\partial f_{j}}{\partial q_{\sigma}} \delta q_{\sigma} = 0.$$

$$\Rightarrow \ \int_{t1}^{t2} dt \sum_{\sigma=1}^{n} \delta q_{\sigma} \left(\frac{\partial L}{\partial q_{\sigma}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{\sigma}} + \sum_{j} \lambda_{j} \frac{\partial f_{j}}{\partial q_{\sigma}} \right)$$

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{\sigma}} - \frac{\partial L}{\partial q_{\sigma}} = \sum_{i} \lambda_{j} \frac{\partial f_{j}}{\partial q_{\sigma}}$$
(5)

En que rotulamos los q_{σ} independientes con $\sigma = 1, \dots, n - k$. Los otros q_{σ} no son independientes. Pero elegimos $\lambda_1, \dots, \lambda_k$ de manera a que se anulen los coeficientes de $\delta q_{n-k+1}, \cdots, \delta q_n$.

Coordenadas generalizadas

Constricciones v coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert

Ecs. de Lagrange Principio de mínima

acción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Fuerzas de constricción

Comparación de E.L. modificada, Ec. 5 con ecuaciones de Lagrange, Ec. 2,

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_{\sigma}} - \frac{\partial T}{\partial q_{\sigma}} = Q_{\sigma}, \ \sigma = 1, \cdots, 3N - k.$$

inspira identificar

$$Q_{\sigma} = -\frac{\partial V}{\partial q_{\sigma}} + \underbrace{\sum_{j=1}^{k} \lambda_{j} \frac{\partial f_{j}}{\partial q_{\sigma}}}_{O'}$$
 (6)

Ejemplo: péndulo.

Coordenadas generalizadas

Constricciones v coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert

Ecs. de Lagrange

Principio de mínima acción

Cantidades conservadas

Símetrías v constantes Sistemas disipativos Teoremas de conservación para N partículas

Outline

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange

- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- **5** Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para *N* partículas

6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Plan

Constricciones y coordenadas generalizadas Desplazamientos virtuales

- Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange
- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- 5 Cantidades conservadas Símetrías y constantes Sistemas disipativos

Teoremas de conservación para N partículas

6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

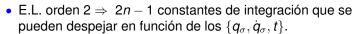
Símetrías y constantes

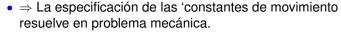
Sistemas disipativos
Teoremas de conservación
para N partículas

El sólido rígido

El solido rigido

Constantes de movimientos





Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías v constantes

Sistemas disipativos

Teoremas de conservación para N partículas

Momentum generalizado

$$p_i \equiv rac{\partial L}{\partial \dot{q}_i}$$
E.L. $\Rightarrow \dot{p}_i = rac{\partial L}{\partial q_i}$.

Reconocemos la 2nda ley de Newton para el caso de sistemas con $L = T(v^2) - V(\vec{q})$:

$$\dot{p}_i = Q_i$$

con

$$Q_i = -\frac{\partial V}{\partial a_i}$$
, fuerza generalizada.

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes

Sistemas disipativos

Teoremas de conservación para N partículas

Simetrías y constantes

• Si una coord. gen. q_{σ} no aparece en L, el correspondiente momentum gen. es constante que da la ec. de mov en σ :

$$rac{\partial L}{\partial a_{\sigma}} = 0 \ \Rightarrow \dot{p}_{\sigma} = 0.$$

- Si $\partial L/\partial q_{\sigma} = 0$ se dice que q_{σ} es cíclica.
- $L(\vec{q}, \vec{q}, t) \Rightarrow \frac{\partial L}{\partial \dot{q}}(\vec{q}, \vec{q}, t)$ y p_{σ} =Cte entrega una "primera integral", una relación entre \vec{q} , $\dot{\vec{q}}$, v t.
- Si L es invariante ante alguna transformación contínua de coordenadas, asociamos una coordenada generalizada con esa simetría q_{σ} (ej: z en un sistema con simetría plano-paralela). Entonces $\partial L/\partial q_{\sigma}=0$, y p_{σ} es Cte. \Rightarrow la existencia de una simetría contínua implica la presencia de un momentum generalizado conservado.

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert

Ecs. de Lagrange Principio de mínima

acción

Fuerzas de constricción

Cantidades conservadas

Símetrías v constantes

Sistemas disipativos Teoremas de conservación para N partículas

Ejemplos

- Movimiento 3-D en potencial 1-D función de $z \Rightarrow \dot{p}_x = \dot{p}_v = 0$.
- Movimiento en un potencial central $\Rightarrow p_{\phi} = \text{Cte}$, correspondiente a la magnitud del momentum angular.
- Simetrías para un sistema cerrado. Homogeneidad del espacio ⇒ L no depende de q

 , si no dependería del origen ⇒ conservación de momentum lineal y angular.

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías v constantes

Simetrías y constantes Sistemas disipativos

Teoremas de conservación para N partículas

El Hamiltoniano

$$H \equiv \sum_i p_i \dot{q}_i - L.$$

- Si $\frac{\partial L}{\partial t} = 0 \Rightarrow \frac{dH}{dt} = 0$ en las trayectorias soluciones de la ecuación de movimiento.
- H = E = T + V para sistemas en los cuales ni V ni las constricciones dependen de t.
- H es una función de q_σ y p_σ, es la transformada de Legendre de H en p.

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías v constantes

Sistemas disipativos Teoremas de conservación para N partículas

Plan

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

- Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange
- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- **5** Cantidades conservadas

Símetrías y constantes

Sistemas disipativos

Teoremas de conservación para N partículas

6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes

Sistemas disipativos

Teoremas de conservación para N partículas

5.2-Sistemas disipativos

 Roce: detalles micro muy complicados ⇒ usar prescripción macro:

$$\vec{F}^d = -\vec{k} \cdot \vec{v}\hat{v}.$$

• Para introducir \vec{F}^d en mecánica analítica introducimos la función disipativa de Rayleigh:

$$R = \frac{1}{2} \sum_{i} k_i \dot{x}_i^2$$
, donde $F_i^d = -\frac{\partial R}{\partial \dot{x}_i} = -k_i \dot{x}_i$.

Agregando a las ecuaciones de movimiento:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}_i} - \frac{\partial L}{\partial x_i} = F_i^d = -\frac{\partial R}{\partial x_i}$$

En coordenadas generalizadas,

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{\sigma}} - \frac{\partial L}{\partial q_{\sigma}} + \frac{\partial R}{\partial \dot{q}_{\sigma}} = 0.$$

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert

Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes

Sistemas disipativos

para N partículas

5.2-Sistemas disipativos

• Ejemplo: aro que rueda sin resbalar.

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de

constricción

Cantidades conservadas

Símetrías y constantes

Sistemas disipativos

Teoremas de conservación para N partículas

Plan

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

- Ecs. de Lagrange Principio de d'Alember Ecs. de Lagrange
- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- **5** Cantidades conservadas

Símetrías y constantes Sistemas disipativos

Teoremas de conservación para N partículas

6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Simetrías y constantes Sistemas disipativos

para N partículas

5.3-Teoremas de conservación para N partículas

- Homogeneidad de t ⇒ Hamiltoniano de un sistema cerrado es cantidad conservada.
- Homogeneidad del espacio \Rightarrow momentum total P_i de un sistema cerrado es conservado.

$$P_i = \sum_a \frac{\partial \mathcal{L}}{\partial v_i^a}.$$

El momentum total se anula en el sistema centro de masa,

$$ec{R}=\sum_{a}m_{a}ec{r}_{a}/\sum_{a}m_{a}.$$

• Isotropía del espacio \Rightarrow momentum angular \vec{L} es cantidad conservada:

$$\vec{L} = \sum_{a} \vec{r}_{a} \wedge \vec{p}_{a}.$$

Coordenadas generalizadas

Constricciones v coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción Fuerzas de

constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

El sólido rígido

.37

Outline

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

- Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange
- 3 Principio de mínima acción
- 4 Fuerzas de constricción
- 5 Cantidades conservadas
 Símetrías y constantes

Teoremas de conservación para N partículas

6 El sólido rígido

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas Símetrías y constantes

Sistemas disipativos
Teoremas de conservación
para N partículas

El solido rigido

6-El sólido rígido

Cuerpo rígido con N partículas, 6 grados de libertad (3 de translación, 3 de rotación) $\Leftrightarrow 3N-6$ constricciones holonónmicas

$$|\vec{r}_i - \vec{r}_i| = \text{Cte.}$$

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Velocidad angular

• Sea R el origen de un sistema S ligado al cuerpo, con velocidad $\vec{V} = d\vec{R}/dt$ en un sistema inercial S_{\circ} . Las normas de los vectores posiciones del cuerpo son constantes en $S_1 \Rightarrow$ el cuerpo describe una rotación en S_2 . En S_{\circ} , para un punto en el cuerpo

$$\vec{\mathbf{v}}_{\circ} = \vec{\mathbf{V}} + \vec{\Omega} \wedge \vec{\mathbf{r}},$$

donde \vec{r} es medido en S, \vec{v}_{\circ} es la velocidad en S_{\circ} , y $\vec{\Omega}$ es la velocidad angular.

• $\vec{\Omega}$ es independiente del origen \vec{R} : si eligimos otro origen \vec{R}' , también ligado al cuerpo, con $\vec{a} = \vec{R}' - \vec{R}$, $\vec{r} = \vec{r}' + \vec{a}$, v $\vec{\mathbf{v}}_{0} = \vec{\mathbf{V}}' + \vec{\Omega}' \wedge \vec{\mathbf{r}}'$, entonces

$$\vec{V}' = \vec{V} + \vec{\Omega} \wedge \vec{a} \text{ y } \vec{\Omega} = \vec{\Omega}'$$
 (7)

• De Ec. 7, vemos que existe un \vec{a} tal que $\vec{V}' = 0$. En este sistema S' el cuerpo describe una rotación pura con un eje de rotación llamado 'eje instantáneo de rotación', que pasa por el origen O', en \vec{R}' .

Coordenadas generalizadas

Constricciones v coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías v constantes Sistemas disipativos Teoremas de conservación para N partículas

Tensor de inercia, Lagrangeano

En S_o, energía cinética:

$$T = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 = \int d^3 x \rho(\vec{x}) \frac{1}{2} |\vec{v}_{\circ}(\vec{x})|^2.$$

- Escribiendo T observado en S₀ en función de las cantidades medidas en el sistema S ligado al cuerpo, $T = \sum_{i} \frac{1}{2} m_i |\vec{V} + \vec{\Omega} \wedge \vec{r}_i|^2$.
- Si ubicamos el centro de S en el centro de masa. T se puede escribir

$$T = \frac{1}{2}MV^{2} + \sum_{i,j=1}^{3} \frac{1}{2}I_{ij}\Omega_{i}\Omega_{j}, \text{ con } I_{ij} = \sum_{\sigma=1}^{N} m_{\sigma}(\delta_{ij}r_{\sigma,i}^{2} - r_{\sigma,i}r_{\sigma,j}).$$

• Caso contínuo, $I_{ii} = \int d^3x \rho(\vec{x})[x_i^2 \delta_{ii} - x_i x_i]$.

Coordenadas generalizadas

Constricciones v coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías v constantes Sistemas disipativos Teoremas de conservación para N partículas

Propiedades del tensor de inercia

- I_{ij} es simétrico. Toda matriz simétrica se puede diagonalizar. Los autovalores I₁, I₂, I₃ se llaman 'momentos principales de inercia', y las direcciones correspondientes del sistema S ligado al cuerpo se llaman los 'ejes principales de inercia'.
- Trompo asimétrico: $I_1 \neq I_2 \neq I_3$
- Trompo simétrico: dos momentos iguales.
- Teorema de los ejes paralelos: puede resultar más cómodo calcular l_{ij} en un sistema S' centrado en un origen O' distinto al centro de masa, pero con ejes paralelos a S. Entonces $\vec{r} = \vec{r}' + \vec{a}$, y

$$I_{ij}=I_{ij}+M(a_i^2\delta_{ij}-a_ia_j).$$

- Momentum angular en sistema inercial ligado a C.M.: $L_i = \sum_{a=1}^{N} m_a (\vec{r}_a \wedge \vec{v}_a) ||_i = \sum_{k=1}^{3} I_{ik} \Omega_k$.
- Notar L y Ω NO paralelos.

Coordenadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange

Principio de mínima acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Movimiento del trompo libre, Ecuaciones de Euler

- Lagrangeano en el sistema inercial S_{\circ} : $L = \frac{1}{2}I_{ij}\Omega_{i}\Omega_{j}$ + E.L. $\Rightarrow \dot{L_{k}} = 0, \ k = 1, 2, 3.$
- Para pasar a una descripción usando componentes en el sistema ligado al cuerpo usamos

$$\left. \frac{d\vec{A}}{dt} \right|_{\text{inercial}} = \left. \frac{d\vec{A}}{dt} \right|_{\text{cuerno}} + \vec{\Omega} \wedge \vec{A},$$

para cualquier \vec{A} y donde $\vec{\Omega}$ es el vector velocidad rotación angular.

•
$$\dot{L}_k \Big|_{inercial} = 0 \Rightarrow \frac{d\vec{L}}{dt} \Big|_{cuerpo} = -\vec{\Omega} \wedge \vec{L}$$
, y
$$I_1 \dot{\Omega}_1 = \Omega_3 \Omega_2 (I_2 - I_3)$$

$$I_2 \dot{\Omega}_2 = \Omega_1 \Omega_3 (I_3 - I_1)$$

$$I_3 \dot{\Omega}_3 = \Omega_1 \Omega_2 (I_1 - I_2)$$

Coordenadas generalizadas

Constricciones y coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange

Principio de d'Alembert Ecs. de Lagrange Principio de mínima

acción

Fuerzas de constricción

Cantidades conservadas

Símetrías y constantes Sistemas disipativos Teoremas de conservación para N partículas

Oscilaciones del trompo simétrico

• Supongamos que $I_1 = I_2 \neq I_3 \Rightarrow \Omega_3 = \text{Cte}$, y

$$\dot{\Omega}_1 = -A\Omega_2
\dot{\Omega}_2 = A\Omega_1, \text{ con } A = \Omega_3(I_3 - I_1)/I_1.$$

 Vemos que Ω₁ y Ω₂ ejecutaran oscilaciones armónicas. Si en t = 0, $\vec{\Omega}$ esta en el plano (\hat{e}_1, \hat{e}_2) , formando un ángulo θ con ê₃,

$$\Omega_{1}(t) = \Omega \sin(\theta) \cos(At)
\Omega_{2}(t) = \Omega \sin(\theta) \sin(At)
\Omega_{3}(t) = \Omega \cos(\theta) \text{ Cte.}$$
(8)

• En el caso del planeta Tierra, $\theta \sim 6 \cdot 10^{-7}$ rad o un desplazamiento de 4 m del polo Norte, y $A \sim \Omega/305$, i.e. una precesión de 305 días.

Coordenadas generalizadas

Constricciones v coordenadas generalizadas Desplazamientos virtuales

Ecs. de Lagrange Principio de d'Alembert

Ecs. de Lagrange Principio de mínima

acción Fuerzas de

constricción

Cantidades conservadas

Símetrías v constantes Sistemas disipativos Teoremas de conservación para N partículas