Parte II Pequeñas Oscilaciones

Índice

II

II			1	
1.	Solu 1.1.	ción general Formulación	1 1	
	1.2. 1.3.	Solución general	23	
2.	Coordenadas Normales 4			
	2.1.	Matriz modal	4	
	2.2.	Coordenadas normales	4	
3.	Muchos grados de libertad			
	3.1.	Problemas de N cuerpos	5	
	3.2.	Frecuencias normales	5	
	3.3.	Modos normales	6	
4.	Límite contínuo			
	4.1.	Paso al contínuo	8	
	4.2.	Solución en modos normales	9	
	4.3.	Lagrangeano para la cuerda	10	
	4.4.	Coordenadas normales	10	
	4.5.	Mínimia acción en medios contínuos	11	
	4.6.	Hamiltoniano	12	

.1

.2

Solución general 1.

1.1. Formulación

- Vamos a considerar perturbaciones en torno al equilibrio de un sistema conservativo, con constricciones independientes de t.
- Energía cinética en coord. gen.:

$$T = \frac{1}{2} \sum_{\sigma,\lambda} m_{\sigma\lambda} \dot{q}_{\sigma} \dot{q}_{\lambda}, \text{ con } \sigma, \lambda = 1, \cdots, n,$$

- donde $m_{\sigma\lambda} = \sum_{i=1}^{n} m_i \frac{\partial x_i}{\partial q_{\sigma}} \frac{\partial x_i}{\partial q_{\lambda}}$. Perturbaciones: $q_{\sigma} = \bar{q}_{\sigma} + \eta_{\sigma}$. En equilibrio, $Q_{\sigma} \equiv \frac{\partial V}{\partial q_{\sigma}} = 0$, y

$$V \approx V_{\circ} + \sum_{\sigma,\lambda} \frac{1}{2} \underbrace{\frac{\partial V^2}{\partial q_{\sigma} \partial q_{\lambda}}}_{\sigma \eta_{\lambda}} \eta_{\sigma} \eta_{\lambda}$$

El Lagrangeano es

$$L = T - V = \frac{1}{2} \sum_{\sigma,\lambda} m_{\sigma} \lambda \dot{\eta}_{\lambda} \dot{\eta}_{\sigma} - v_{\sigma\lambda} \eta_{\sigma} \eta_{\lambda}$$
(1)

$$\Rightarrow \sum_{\lambda} m_{\sigma\lambda} \ddot{\eta}_{\lambda} + v_{\sigma\lambda} \eta_{\lambda} = 0.$$
 (2)

1.2. Modos normales

Un grado de libertad

- $m_{\sigma\lambda} \equiv m, v_{\sigma\lambda} \equiv k.$
- Solución de Eq. 2 es $\eta = \operatorname{Re}(z)$,

$$\begin{aligned} z(t) &= z_+ e^{i\sqrt{\frac{k}{m}t}} + z_- e^{-i\sqrt{\frac{k}{m}t}}, & \text{si } k > 0, \\ z(t) &= z_+ e^{\sqrt{\frac{k}{m}t}} + z_- e^{-\sqrt{\frac{k}{m}t}}, & \text{si } k < 0, \end{aligned}$$

$$\Rightarrow \eta = \rho \cos\left(\sqrt{\frac{k}{m}}t + \phi\right).$$

n grados de libertad

■ Pasando a ℂ, Eq. 2 se escribe

$$\sum_{\lambda} m_{\sigma\lambda} \ddot{z}_{\lambda} + v_{\sigma\lambda} z_{\lambda} = 0, \text{ con } \eta_{\sigma} = \Re(z_{\sigma}).$$
(3)

Buscamos soluciones de Eq. 3 en modos normales, en que todas las coordenadas oscilan con la misma frecuencia:

$$z_{\sigma} = z_{\sigma}^s \exp(i\omega t).$$

Sustitución en Eq. 3 da

$$\sum_{\lambda=1}^{n} \underbrace{\left(v_{\sigma\lambda} - \omega^2 m_{\sigma\lambda}\right)}_{a_{\sigma\lambda}} z_{\lambda}^{s} = 0 \tag{4}$$

• Eq. 4 tiene soluciones no triviales solo si $det(a_{\sigma\lambda}) = 0$,

$$|v_{\sigma\lambda} - \omega^2 m_{\sigma\lambda}| = 0 \implies n \text{ raíces complejas } \omega_s^2, \ s = 1, \cdots, n.$$

•	5

.3

n grados de libertad

- Props: los ω_s^2 son reales positivos (ver demo en clase).
- Como $det(a_{\sigma\lambda}) = 0$, una de las *n* ecuaciones en Eq. 4 es combinación lineal de las otras. Eliminando la *n*-esima, la Ley de Cramer nos da z_{σ} :

$$a_{1,1}\frac{z_1}{z_n} + \dots + a_{1,(n-1)}\frac{z_{n-1}}{z_n} = -a_{1,n}$$

$$\vdots \qquad \vdots$$
$$a_{(n-1),1}\frac{z_{n-1}}{z_n} + \dots + a_{(n-1),(n-1)}\frac{z_{n-1}}{z_n} = -a_{(n-1),n}$$
(5)

• Vemos que z_{σ}^{s}/z_{n} es real porque todos los coefs $a_{\sigma\lambda}$ son reales.

$$\Rightarrow z_{\sigma}^{s} = e^{i\phi_{s}}\rho_{\sigma}^{s}, \text{ con } (\phi_{s}, \rho_{\sigma}^{s}) \in \mathbb{R}.$$
 (6)

Modos ortonormales

Sustitución de Eq. 6 en Eq. 3 y combinando dos frecuencias normales s y t lleguamos a

$$\sum_{\lambda\sigma} \rho_{\sigma}^{t} m_{\sigma\lambda} \rho_{\lambda}^{s} = \delta_{st} \tag{7}$$

• El modo normal correspondiente a la frecuencia normal (o 'autovalor') es

$$z^s_{\sigma} = C^s e^{i\phi_s} \rho^s_{\sigma},$$

en que C^s y ϕ^s son las únicas constantes reales por especificar.

Solución general 1.3.

- z_{\sigma}(t) = \sum_{s=1}^n (z_+^s)_\sigma e^{i\omega_s t} + (z_-^s)_\sigma e^{-i\omega_s t}, \sigma = 1, \dots, n.
 Tomando parte real, \eta_\sigma = \frac{1}{2} (z_\sigma^s + z_\sigma^{s*}), y \text{ definiendo } (z_+^s)_\sigma + (z_+^s)_\sigma^s = C^s \rho_\sigma^s e^{i\omega_s}, \text{ and } \text{ and } \text{ begin in the set of the se lleguamos a n

$$\eta_{\sigma} = \sum_{i=1}^{n} \rho_{\sigma}^{s} C^{s} \cos(\omega_{s} t + \phi_{s}).$$

• para determinar las constantes ϕ_s y C^s se usan las condiciones iniciales, $\eta_{\sigma}(0)$ y $\dot{\eta}_{\sigma}(0)$, y usando Eq. 7,

$$\sum_{\sigma,\lambda} \rho_{\lambda}^{t} m_{\lambda,\sigma} \eta_{\sigma}(0) = C^{t} \cos(\phi_{t})$$
$$\sum_{\sigma,\lambda} \rho_{\lambda}^{t} m_{\lambda,\sigma} \dot{\eta}_{\sigma}(0) = -\omega_{t} C^{t} \sin(\phi_{t})$$

 \Rightarrow despejamos C^t y tan (ϕ_t) .

.8

.6

2. Coordenadas Normales

2.1. Matriz modal

- Definimos la matriz modal A_{λσ} = ρ^σ_λ, es una matriz cuadrada independiente de las condiciones iniciales.
- prop.: la matriz modal diagonaliza la matriz masa $m_{\lambda\sigma}$:

$$\mathcal{A}^T m \mathcal{A} = \mathbb{I}.$$

• prop.: la matriz modal diagonaliza la matriz potencial $v_{\lambda\sigma}$:

$$\mathcal{A}^T v \mathcal{A} = \mathbb{I}.$$

2.2. Coordenadas normales

• Definimos un nuevo set de coordenadas generalizadas, ζ_{σ} , con

$$\eta(t) = \mathcal{A}\zeta(t), \text{ o bien}, \ \mathcal{A}^T \ m \ \eta(t) = \zeta(t).$$

• El Lagrangeano Eq. 1 se escribe

$$L = \frac{1}{2} \sum_{\sigma,\lambda} m_{\sigma\lambda} \dot{\eta}_{\lambda} \dot{\eta}_{\sigma} - v_{\sigma\lambda} \eta_{\sigma} \eta_{\lambda} = \frac{1}{2} \sum_{\sigma} (\dot{\zeta}_{\lambda})^2 - \omega_{\sigma}^2 \zeta_{\sigma}^2$$

Las ecuaciones de movimiento son entonces

$$\ddot{\zeta}_{\sigma} = -\omega_{\sigma}^2 \zeta_{\sigma}, \ \sigma = 1, \cdots, n.$$

 Vemos que las coordenadas normales desacoplan el problema de pequeñas oscilaciones. Las soluciones son,

$$\zeta_{\sigma} = C^{\sigma} \cos(\omega_{\sigma} t + \phi_{\sigma}), \text{ y usando la definición de } \zeta_{\sigma},$$

$$\eta_{\lambda} = \sum_{\sigma} \rho_{\lambda}^{\sigma} C^{\sigma} \cos(\omega_{\sigma} t + \phi_{\sigma}).$$

Ejemplos

- Dos péndulos acoplados
- Ortogonalización de Graham-Schmidt (Fetter 4.10)

.10

.11

Muchos grados de libertad 3.

3.1. Problemas de N cuerpos

• Oscilaciones transversas de N masas en una cuerda sin masa.

Mécanica vectorial da ec. de mov .:

$$m\ddot{\mu}_i + \frac{2\tau}{a}\mu_i - \frac{\tau}{a}(\mu_{i+1} + \mu_{i-1}) = 0 \operatorname{con} \mu_0 = \mu_{N+1} = 0.$$
(8)

Similitud con model de red1-D sugiere $k\leftrightarrow \tau/a$ y

$$L = \frac{1}{2}m\sum_{i}(\dot{\mu}_{i})^{2} - \frac{\tau}{2a}\sum_{i=0}^{N}(\mu_{i+1} - \mu_{i})^{2}.$$
(9)

3.2. Frecuencias normales

• Modos normales $\mu_i = C\rho_i \cos(\omega t + \phi) \Rightarrow$

Ec. de mov.
$$(\frac{2\tau}{a} - m\omega^2)\rho_i - \frac{\tau}{a}(\rho_{i+1} + \rho_{i-1}) = 0, \ i = 1, \cdots, N,$$

 $\begin{array}{l} & \mbox{con } \rho_\circ = \rho_{N+1} = 0. \\ \bullet & \mbox{Introduciendo } \lambda \equiv 2 - \frac{m\omega^2 a}{\tau}, \end{array}$

$$\lambda \rho_i - (\rho_{i+1} + \rho_{i-1}) = 0.$$
.14

.12

El conjunto de ecuaciones lineales λρ_i − (ρ_{i+1} + ρ_{i-1}) = 0 tiene soluciones no triviales solo si su determinante D_N = 0. ⇒(ver cátedra)

$$D_N = \lambda D_{N-1} - D_{N-2}.$$

• Buscamos soluciones en $D_N = Ae^{iBN}$,

$$\longrightarrow D_N = A_+ e^{iN\psi} + A_- e^{-iN\psi}, \text{ con } \lambda \equiv 2\cos(\psi).$$

Los A_{\pm} estan dados por D_1 y D_2 :

$$D_N = \frac{\sin((N+1)\psi)}{\sin(\psi)} = 0, \quad \Rightarrow \ (N+1)\psi = n\pi, \ n \in \mathbb{N} \Rightarrow \psi \in \mathbb{R}.$$
(10)

• Usando $\lambda = 2 - m\omega^2 a / \tau = 2\cos(\psi)$,

$$\omega^2 = \frac{2\tau}{ma}(1 - \cos(\phi)) = \frac{4\tau}{ma}\sin^2(\frac{\psi}{2}).$$

De Ec. 10,

$$\omega^{2} = \frac{4\tau}{ma} \sin^{2}(\frac{1}{2}\frac{n\pi}{N+1}), \ n = 1, \cdots, N.$$

3.3. Modos normales

Sustitución de las frecuencias normales en la Ec. de mov. Ec. 8 da

$$2\cos\left(\frac{n\pi}{N+1}\right)\rho_i^n = \rho_{i+1}^n + \rho_{i-1}^n.$$

Las soluciones están dadas por el mismo método que para las raices de D_N = 0, pero es interesante un método alternativo: Introducimos μ(x_j) = μ_j, con x_j = ja, y buscamos soluciones de la forma

$$\mu(x_j, t) = \Re(A \exp(i[kx_j - \omega t]), \tag{11}$$

o bien con -k.

• Sustitución de Ec. 11 en Ec. 8 da

$$\omega^2 = \frac{2\tau}{ma}(1 - \cos(ka)) = \frac{4\tau}{ma}\sin^2\left(\frac{ka}{2}\right).$$

.16

Usamos dos tipos de condiciones de borde:

Condiciones de borde periódicas

$$\mu(x_i) = \mu(x_{N+i}) = \mu(x_i + Na),$$

y usando Ec. 11, $e^{ikNa} = 1 \iff k = 2n\pi/Na$, con

$$n = 0, \pm 1, \pm 2, \cdots, \frac{1}{2}(N-1) \text{ para } N \text{ impar,}$$

$$n = 0, \pm 1, \pm 2, \cdots, \frac{1}{2}(N-1), \frac{N}{2} \text{ para } N \text{ par,}$$

En que usamos la condición de que deben haber exactamente ${\cal N}$ modos normales.

- Condiciones de borde con extremos fijos.
 - La solución general del tipo Ec. 11 es

$$\mu(x_j, t) = \Re(A_+e^i[kx_j - \omega t] + A_-e^i[-kx_j - \omega t],$$

y las condición $\mu(0) = 0$ da $A_+ = -A_-$.

• Con $\mu(x_{N+1}) = \mu((N+1)a) = 0$ tenemos

$$\sin(k(N+1)a) = 0 \implies k = \frac{n\pi}{a(N+1)}, \ n = 1, \cdots, N.$$

- Vemos que la expresión para k(n) es equivalente al aplicar la 'relación de dispersión' Ec. 16 a las ω(n) dadas por el método D_N = 0.
- Con este método alternativo tenemos la expresión para los modos normales:

$$\mu(x_j, t) = 2iA_n \sin\left(\frac{n\pi xj}{a(N+1)}\right) \exp(i\omega t),$$

vemos que $\mu(x_j,t)\propto
ho_j^n$ pero sin normalizar, ver aux..

En resumen, graficamos

$$\omega_n/c = \frac{2}{a} \sin\left(\frac{n\pi a}{l^2}\right)$$
, con $l \equiv (N+1)a$, donde $c \equiv \sqrt{\tau/(\frac{m}{a})}$.

.18

Notar la existencia de una frecuencia normal máxima para sistemas discregtos. Cuando $N \gg 1$, $(\omega_n/c)_{\text{max}} \approx 2/a$, con una longitud de onda mínima $\lambda = 2a(N + 1)/n > 2a$.

.19

.20

.21

4. Límite contínuo

4.1. Paso al contínuo

- Tomamos el ejemplo de las oscilaciones transversas de una cuerda con masas, y llevamos N → ∞, a → 0, con σ = m/a constante.
- $\blacksquare \Rightarrow$

$$\omega_n^2 \longrightarrow c \frac{n\pi}{l}, \ n \in \mathbb{N}.$$

Soluciones en modos normales (~ ondas planas) μ(x,t) = A exp(i[kx-wt]), con k = (2πn)/l, n = 0, ±1, ±2, · · · , ±∞.

• Ec. de mov. de la cuerda. $\sin(\phi) \sim \phi \sim \tan \phi = \partial u / \partial x$.

Newton:
$$\sigma dx \frac{\partial^2 u}{\partial t^2} = \tau (x + dx) \left. \frac{\partial u}{\partial x} \right|_{x+dx} - \tau (x) \frac{\partial u}{\partial x}$$

 $\Leftrightarrow \sigma \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left(\tau (x) \frac{\partial u}{\partial x} \right).$

- Tarea: verificar que se obtiene la misma ecuación desde Ec. 8 pasando al contínuo.
- Si σ y τ son constantes lleguamos a Ec. de ondas 1-D:

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0.$$
(12)

8

4.2. Solución en modos normales

- Ponemos $u(x,t) = C\rho(x)\cos(wt+\phi)$.
- Sustitución en Ec. de ondas, Ec. 12, da:

$$\frac{d^2\rho}{dx^2} + k^2\rho = 0, \ \operatorname{con}, k = w/c \ \Rightarrow \rho(x) = A\sin(kx + \theta).$$

- Extremos fijos, $\rho(0) = \rho(l) = 0 \longrightarrow \rho(x) \propto \sin(kx)$, con $k = n\pi/l$, $n \in \mathbb{N}$.
- Para satisfacer condiciones de bordes, el largo de la cuerda debe ser un multiplo de la longitud de onda media, i.e. λ = 2l/n.
- Vemos que el desplazamiento transversal en el caso contínuo es el mismo que en el caso discreto.
- Por analogía con caso discreto, la solución general de la ec. de ondas se construye por superposición de los modos normales,

$$u(x,t) = \sum_{n=1}^{\infty} C_n \rho^n(x) \cos(\omega_n t + \phi_n).$$
(13)

O bien, en notación de Fourier, Ec. 13 se escribe

$$u(x,t) = \sum_{n} \sqrt{\frac{2}{l\sigma}} \sin(k_n x) [a_n \cos(\omega_n t) + b_n \sin(\omega_n t)], \qquad (14)$$

donde, $a_n = C_n \cos(\phi_n), \ b_n = -C_n \sin(\phi_n).$

- a_n y b_n se despejan de las condiciones iniciles u(x, t = 0) y $\dot{u}(x, t = 0)$, usando la ortonormalidad de los modos.
- En el caso contínuo, la relación de ortonormalidad, Ec. 7, se escribe

$$\lim_{N \to \infty, a \to 0} \sum_{\mu=1}^{N} a \rho^{t}(x_{\mu}) \frac{m}{a} \rho^{s}(x_{m}u) = \delta_{st},$$
$$\Rightarrow \int_{0}^{l} dx \rho^{t}(x) \sigma \rho^{s}(x) = \delta_{st}.$$
(15)

- Tarea: confirmar Ec. 15 para modos normales contínuos 1D.
- Con la ortonormalidad, podemos despejar los a_n y b_n de Ec. 14 usando las condiciones iniciales:

$$a_n = \int_0^l \rho^n(x)u(x,0)\sigma dx = \sqrt{2}l\sigma \int_0^k \sin(k_n x)u(x,0)\sigma dx,$$
$$\omega_n b_n = \int_0^l \rho^n(x)\dot{u}(x,0)\sigma dx = \sqrt{\frac{2}{l\sigma}} \int_0^l \sin(k_n x)\dot{u}(x,0)\sigma dx.$$

.22

.24

4.3. Lagrangeano para la cuerda

Lagrangeano por límite contínuo

• De Ec. 9,

$$L = \frac{1}{2} \frac{m}{a} \sum_{i} a(\dot{\mu}_{i})^{2} - \frac{\tau}{2a} \sum_{i=0}^{N} a(\frac{\mu_{i+1} - \mu_{i}}{a})^{2}.$$

• Pasando al límite contínuo, $a \to 0, N \to \infty, \mu_i(t) = u(x_i, t),$

$$L = \frac{\sigma}{2} \int_0^l \left(\frac{\partial u}{\partial t}\right)^2 dx - \frac{\tau}{2} \int_0^l \left(\frac{\partial u}{\partial x}\right)^2 dx.$$

Lagrangeano por tratamiento directo

• La energía cinética de un elto de masa dm es

$$\frac{1}{2}dm\left(\frac{\partial u}{\partial t}\right)^2,$$

Para la cuerda entera,

$$T = \frac{1}{2} \int_0^l dx \sigma \left(\frac{\partial u}{\partial t}\right)^2.$$

 La energía potencial esta dada por el trabajo que ejercen las fuerzas de tension internas a dm, que tienden a devolverlo a su largo en reposo dx:

$$dW = -\tau (ds - dx) = -\tau dx \left[\left\{ 1 + \left(\frac{\partial u}{\partial t}\right)^2 \right\}^2 - 1 \right]$$
$$\approx \frac{\tau}{2} \left[\frac{\partial u}{\partial x} \right]^2 dx = -dU. \longrightarrow V = \frac{\tau}{2} \int_0^l \left(\frac{\partial u}{\partial x} \right)^2 dx$$

4.4. Coordenadas normales

Solución general cuerda con extremos fijos:

$$u(x,t) = \sum_{n=1}^{\infty} \rho_n(x) C_n \cos(\omega_n t + \phi_n), \qquad (16)$$

$$\operatorname{con} \rho_n(x) = \sqrt{\frac{2}{l\sigma}} \sin\left(\frac{n\pi x}{l}\right) \, \mathbf{y} \, \int_0^l dx \rho_n(x) \sigma \rho_m(x) = \delta_{mn}$$

• Del parecido con $\mu_i(t) = \sum_{i=1}^N \rho_i^n \zeta_n$, definimos

$$\zeta_n(t) = C_n \cos(\omega_n t + \phi_n), \ n \in \mathbb{N} \implies u(x, t) = \sum_{n=1}^{\infty} \rho_n(x)\zeta_n(t).$$

.25

.26

• Integrando por partes $V = \frac{\tau}{2} \int_0^l \left(\frac{\partial u}{\partial x}\right)^2 dx$, y usando ec. de ondas en Eq. 16 para $\frac{\partial^2 u_n(x)}{\partial x^2}$:

$$V(x) = \frac{\tau}{2} \int_0^l \left[\sum_{n=1}^\infty \rho_n(x) C_n \cos(\omega_n t + \phi_n) \right] \\ \left[\sum_{m=1}^\infty \rho_m(x) C_m k_m^2 \cos(\omega_m t + \phi_m) \right], \quad (17)$$

y usando la ortonormalidad de los modos,

$$V(x) = \frac{1}{2} \sum_{m=1}^{\infty} \omega_m \zeta_m^2.$$

• Para la energía cinética, $T = \frac{1}{2} \int dx \sigma (\partial u / \partial t)^2$, tenemos

$$T = \frac{1}{2} \sum_{m} (\dot{\zeta}_m)^2.$$

Desacoplamos el Lagrangeano:

$$L = \sum_{m=1}^{\infty} (\dot{\zeta}_m - \omega_m^2 \zeta_m^2), \text{ con ec. de mov } \ddot{\zeta}_n = -\omega_n^2 \zeta_n.$$

4.5. Mínimia acción en medios contínuos

• Introducimos la densidad Lagrangeana $\mathcal{L}(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial t}; x, t)$:

$$\delta S = 0 = \delta \int_{t_1}^{t_2} L dt = \delta \int_{t_1}^{t_2} dt \int_0^l dx \mathcal{L}(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial t}; x, t) = 0.$$

• Considerando una variación $\delta u \operatorname{con} \delta u(x = 0, t) = \delta u(x = l, t) = \delta u(x, t_1) = \delta u(x, t_2) = 0$, i.e. con condiciones de bordes fijas, lleguamos a:

$$\frac{\partial}{\partial t}\frac{\partial \mathcal{L}}{\partial (\partial u/\partial t)} + \frac{\partial}{\partial x}\frac{\partial \mathcal{L}}{\partial (\partial u/\partial x)} - \frac{\partial \mathcal{L}}{\partial x} = 0.$$

• Con
$$L = \int_0^l dx \, \left(\frac{\sigma}{2}\right) \left(\frac{\partial u}{\partial t}\right)^2 - \frac{\tau}{2} \left(\frac{\partial u}{\partial x}\right)^2$$
, recuperamos ec. de ondas 1D.

2	9
_	_

Hamiltoniano 4.6.

- H = T + V ya que \mathcal{L} no depende de t, ni tampoco la relación entre (x, y) y las coord. gen. u_i .
- $\Rightarrow H = T + V = \frac{1}{2}\sigma \int_0^l dx \left(\frac{\partial u}{\partial t}\right)^2 + \frac{1}{2}\tau \int_0^l dx \left(\frac{\partial u}{\partial x}\right)^2.$ $\Rightarrow H = E = \frac{1}{2}\sum_n (\dot{\zeta}_n)^2 + \omega_n^2 (\zeta_n)^2, \text{ y usando } \zeta_n = C_n \cos(\omega_n t + \phi_n),$

$$H = E = \frac{1}{2} \sum_{n=1}^{\infty} \omega_n^2 C_n^2.$$

	Q	n
•	J	U