Parte I

Mecánica de Lagrange

Índice

I		1
1.	Coordenadas generalizadas	1
	1.1. Constricciones y coordenadas generalizadas	1
	1.2. Desplazamientos virtuales	3
2.	Ecs. de Lagrange	3
	2.1. Principio de d'Alembert	3
	2.2. Ecs. de Lagrange	3
3.	Principio de mínima acción	4
4.	Fuerzas de constricción	5
5.	Cantidades conservadas	6
	5.1. Símetrías y constantes	6
	5.2. Sistemas disipativos	7
	5.3. Teoremas de conservación para N partículas	8
6.	El sólido rígido	8

1. Coordenadas generalizadas

1.1. Constricciones y coordenadas generalizadas

Sistemas constreñidos y fuerzas de reacción.

- Sistema de N partículas: 3N grados de libertad $\{x_i\}_{i=1}^{n=3N}$, 3 direcciones de translación por partícula: $i = (1, 2, 3,), (4, 5, 6), \cdots, (n-2, n-1, n)$.
- En presencia de constricciones el # de grados de libertad es reducido por fuerzas de reacción:

$$\dot{p}_i = F_i^a + R_i, \ i = 1, \cdots, 3N,$$

con p_i i-esima componente momentum (según x_i), F_i^a fuerza aplicada y R_i fuerza de reacción.

Constricciones holonómicas

• Constricciones holonómicas: se pueden escribir como k ecuaciones,

$$f_j(x_1,\dots,x_n,t) = c_j, \ j = 1,2,\dots,k.$$

■ Ejemplos: partícula constreñida a una superficie 2-D z = f(x, y), o a una curva $\vec{x} = \vec{f}(s)$, doble péndulo planar con largos fijos (dos grados de libertad, θ_1, θ_2).

Constricciones no-holonómicas

- No hay ecuación ligando los $\{x_i\}$. Ejemplo: partícula que resbala en el campo \vec{g} sobre una esfera, $r \geq R$.
- Dentro de las constricciones no-holonómicas estan las constricciones no-integrables:

$$\sum_{i} h_i dx_i = 0.$$

Ejemplo: cilíndro que rueda sin resbalar.

Coordenadas generalizadas

- Consideremos N partículas con k constricciones holonómicas: hay 3N-k grados de libertad. Elegimos $\{q_i\}_{i=1}^{3N-k}$ coordenadas *independientes* que caracterisan el sistema. $\{q_i\}_{i=1}^{3N-k} \equiv \underline{\text{coordenadas generalizadas}}$.
- Ejemplos: s en $\vec{x} = \vec{f}(s)$, θ_1 , θ_2 en el doble péndulo planar.
- Hay que especificar el tiempo en el caso de constricciones holonómicas tiempodependientes.
- Relación con coordinadas cartesianas:

$$x_i = x_i(q_1, \dots, q_{n-k}, t), i = 1, \dots, 3N.$$

Estado mecánico.

- Los $\{q_j\}_{j=1}^{3N-k}$ son variables independientes que determinan la posición de un sistema. Pero los $\{q_j\}_{j=1}^{3N-k}$ no bastan para determinar el **estado mecánico** del sistema, porque para determinar la posición en un instante siguiente se necesitan las velocidades $\{\dot{q}_j\}_{j=1}^{3N-k}$.
- La experiencia indica que dados $\{q_j\}_{j=1}^{3N-k}$ y $\{\dot{q}_j\}_{j=1}^{3N-k}$, en t, queda determinado el estado mecánico, lo cual en principio permite predecir el movimiento futuro, suponiendo que se puede resolver el problema mecánico.
- En otras palabras, dados $\{q_j\}_{j=1}^{3N-k}$ y $\{\dot{q}_j\}_{j=1}^{3N-k}$ quedan determinados $\{\ddot{q}_j\}_{j=1}^{3N-k}$.
- ⇒ Las variables **independientes** de un problema mecánico son

$$\{q_j, \dot{q}_j, t\}, \ j = 1, \cdots, 3N - k.$$

.7

1.2. Desplazamientos virtuales

- Desplazamiento virtual $\{\delta x_i\}_{i=1}^{3N}$:
 - infinitesimal,
 - instantáneo, ocurre en un instante t en el cual las constricciones estan fijas,
 - los $\{\delta x_i\}_{i=1}^{3N}$ deben ser consistentes con constricciones.
- Para desplazamientos virtuales,

$$\delta x_i = \sum_{l=1}^{n-k} \frac{\partial x_i}{\partial q_l} \delta q_l,$$

en que se indica por δ la diferencia infinitesimal 'instantánea', con dt=0.

2. Ecs. de Lagrange

2.1. Principio de d'Alembert

- "Las fuerzas de constricciones no trabajan en desplazamiento virtuales"
- $\blacksquare \Rightarrow \sum_{i} R_{i} \delta x_{i} = 0$ en que R_{i} es la reacción debido a las contricciones.
- Con 2^{nda} ley de Newton: $\Rightarrow F_i^a + R_i \dot{p}_i = 0$, donde F_i^a es la fuerza aplicada, tenemos el Principio de d'Alembert:

$$\sum_{i} (F_i^a - \dot{p}_i) \delta x_i = 0. \tag{1}$$

- Notar que en el caso sin constricciones, los δx_i son independientes y se reduce a 2nda ley de Newton.
- Notar ausencia de fuerzas de reacción.

2.2. Ecs. de Lagrange

■ Trabajo de las fuerzas externas en un desplazamiento virtual:

$$\delta W = \sum_{i=1}^{3N} F_i \delta x_i = \sum_{\sigma=1}^{3N-k} Q_{\sigma} \delta q_{\sigma},$$

con $Q_{\sigma} \equiv \sum_{i=1}^{3N} F_i \frac{\partial x_i}{\partial q_{\sigma}}$, fuerza generalizada.

■ Introduciendo la energía cinética,

$$T \equiv \frac{1}{2} \sum_{i}^{3N} m_i \dot{x}_i^2,$$

se puede reescribir el principio de d'Alembert Ec. 1, en las Ecs. de Lagrange:

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_{\sigma}} - \frac{\partial T}{\partial q_{\sigma}} = Q_{\sigma}, \ \sigma = 1, \cdots, 3N - k.$$
 (2)

Fuerzas conservativas, Lagrangeano

 \blacksquare Fuerza externa $F_i = -\frac{\partial}{\partial x_i} V(\{x_i\},t)$, y

$$Q_{\sigma} = -\frac{\partial}{\partial q_{\sigma}} V(\{q_j\}_{j=1}^{3N-k}, t),$$

■ Introducimos Lagrangeano, L = T - V, y Ec. 2 da la Ec. de Euler-Lagrange:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{\sigma}} - \frac{\partial L}{\partial q_{\sigma}} = 0, \ \sigma = 1, \cdots, 3N - k.$$
(3)

Ejemplos

- Péndulo.
- Masa en un anillo girando en un plano.
- Estabilidad, bifurcaciones: masa en un anillo girando con eje de rotacion que pasa por su centro y es paralelo a \vec{g} .

3. Principio de mínima acción

Cálculo de variaciones

- Consideremos una función y(x), y $I \equiv \int_{x_1}^{x_2} \phi(y, y', x) dx$, donde ϕ es un funcional de y y y'.
- La función y(x) que extrema I, dado condiciones de bordes fijas en x_1 y x_2 , es solución de las ecuaciones de Euler,

$$\frac{d}{dx}\frac{\partial\phi}{\partial y'} - \frac{\partial\phi}{\partial y} = 0. {4}$$

.10

.11

Principio de Hamilton

■ Similitud con Ecs. de Euler, Ec. 4, sugiere que Ecs. de Euler-Lagrange, Ec. 3, derivan de un principio variacional. Para 1-D:

$$\begin{array}{ccc} x & \longrightarrow & t \\ y(x) & \longrightarrow & q(t) \\ y' & \longrightarrow & \dot{t} \\ \phi(y,y',x) & \longrightarrow & L(q,\dot{q},t) \end{array}$$

■ Definimos la acción

$$S = \int_{t_1}^{t_2} L dt,$$

y el principio de mínima acción arroja las Ecs. de Euler-Lagrange, Ec. 3.

Lagrangeano de la partícula libre

- Ppio. de Hamilton ⇔ formulación fundamental de la mecánica.
- Consideraciones fundamentales en relatividad Galileana conducen al Lagrangeano de la partícula libre,

$$L = \frac{1}{2}mv^2.$$

4. Fuerzas de constricción

Modificación de las Ecs. de E.-L.

Tenemos k constricciones:

$$f_j(\{q_\sigma\},t)=c_j,\ \ j=1,\cdots,k\ \ \Rightarrow \{q_\sigma\}$$
 no independientes

$$\delta f_{j} = \sum_{\sigma=1}^{n} \frac{\partial f_{j}}{\partial q_{\sigma}} \delta q_{\sigma} = 0.$$

$$\Rightarrow \int_{t1}^{t2} dt \sum_{\sigma=1}^{n} \delta q_{\sigma} \left(\frac{\partial L}{\partial q_{\sigma}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{\sigma}} + \sum_{j} \lambda_{j} \frac{\partial f_{j}}{\partial q_{\sigma}} \right)$$

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{\sigma}} - \frac{\partial L}{\partial q_{\sigma}} = \sum_{j} \lambda_{j} \frac{\partial f_{j}}{\partial q_{\sigma}}$$
(5)

En que rotulamos los q_{σ} independientes con $\sigma=1,\cdots,n-k$. Los otros q_{σ} no son independientes. Pero elegimos $\lambda_1,\cdots,\lambda_k$ de manera a que se anulen los coeficientes de $\delta q_{n-k+1},\cdots,\delta q_n$.

.14

.15

Fuerzas de constricción

Comparación de E.L. modificada, Ec. 5 con ecuaciones de Lagrange, Ec. 2,

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_{\sigma}} - \frac{\partial T}{\partial q_{\sigma}} = Q_{\sigma}, \ \sigma = 1, \cdots, 3N - k.$$

inspira identificar

$$Q_{\sigma} = -\frac{\partial V}{\partial q_{\sigma}} + \underbrace{\sum_{j=1}^{k} \lambda_{j} \frac{\partial f_{j}}{\partial q_{\sigma}}}_{Q_{\sigma}^{r}}$$

$$\tag{6}$$

Ejemplo: péndulo.

.17

5. Cantidades conservadas

5.1. Símetrías y constantes

Constantes de movimientos

- E.L. orden $2 \Rightarrow 2n-1$ constantes de integración que se pueden despejar en función de los $\{q_{\sigma}, \dot{q}_{\sigma}, t\}$.
- ⇒ La especificación de las 'constantes de movimiento' resuelve el problema mecánico.

.18

Momentum generalizado

$$p_i \equiv \frac{\partial L}{\partial \dot{q}_i}$$
E.L. $\Rightarrow \dot{p}_i = \frac{\partial L}{\partial q_i}$.

Reconocemos la 2nda ley de Newton para el caso de sistemas con $L=T(v^2)-V(\vec{q})$:

$$\dot{p}_i = Q_i$$

con

$$Q_i = -rac{\partial V}{\partial q_i}, \;\; {
m fuerza} \; {
m generalizada}.$$

.19

Simetrías y constantes

■ Si una coord. gen. q_{σ} no aparece en L, el correspondiente momentum gen. es constante que da la ec. de mov en σ :

$$\frac{\partial L}{\partial q_{\sigma}} = 0 \implies \dot{p}_{\sigma} = 0.$$

- $L(\vec{q}, \dot{\vec{q}}, t) \Rightarrow \frac{\partial L}{\partial \dot{q}_{\sigma}}(\vec{q}, \dot{\vec{q}}, t) = p_{\sigma}$ =Cte entrega una "primera integral", una relación entre $\vec{q}, \dot{\vec{q}}, y t$.
- Si L es invariante ante alguna transformación contínua de coordenadas, asociamos una coordenada generalizada con esa simetría q_{σ} (ej: z en un sistema con simetría plano-paralela). Entonces $\partial L/\partial q_{\sigma}=0$, y p_{σ} es Cte. \Rightarrow la existencia de una simetría contínua implica la presencia de un momentum generalizado conservado.

Ejemplos

- Movimiento 3-D en potencial 1-D función de $z \Rightarrow \dot{p}_x = \dot{p}_y = 0$.
- Movimiento en un potencial central $\Rightarrow p_{\phi}$ =Cte, correspondiente a la magnitud del momentum angular.
- Simetrías para un sistema cerrado. Homogeneidad del espacio $\Rightarrow L$ no depende de \vec{q} , si no dependería del origen \Rightarrow conservación de momentum lineal y angular.

El Hamiltoniano

$$H \equiv \sum_{i} p_i \dot{q}_i - L.$$

- Si $\frac{\partial L}{\partial t} = 0$ $\Rightarrow \frac{dH}{dt} = 0$ en las trayectorias soluciones de la ecuación de movimiento.
- ullet H=E=T+V para sistemas en los cuales ni V ni las constricciones dependen de t.
- H es una función de q_{σ} y p_{σ} , es la transformada de Legendre de H en p.
- Ejemplo: Constante de mov. $H \neq E$ para anillo en aro rotando (al ser un sistema forzado E no es Cte. de mov.).

5.2. Sistemas disipativos

■ Roce: detalles micro muy complicados ⇒ usar prescripción macro:

$$\vec{F}^d = -\vec{k} \cdot \vec{v}\hat{v}.$$

Para introducir \vec{F}^d en mecánica analítica introducimos la función disipativa de Rayleigh:

$$R = \frac{1}{2} \sum_{i} k_i \dot{x}_i^2$$
, donde $F_i^d = -\frac{\partial R}{\partial \dot{x}_i} = -k_i \dot{x}_i$.

■ Agregando a las ecuaciones de movimiento:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}_i} - \frac{\partial L}{\partial x_i} = F_i^d = -\frac{\partial R}{\partial \dot{x}_i}$$

.20

.21

■ En coordenadas generalizadas usamos $\partial x_i/\partial q_\sigma = \partial \dot{x}_i/\partial \dot{q}_\sigma$,

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{\sigma}} - \frac{\partial L}{\partial q_{\sigma}} + \frac{\partial R}{\partial \dot{q}_{\sigma}} = 0.$$

• Ejemplo: aro que rueda sin resbalar.

.24

.23

5.3. Teoremas de conservación para N partículas

- Homogeneidad de $t \Rightarrow$ Hamiltoniano de un sistema cerrado es cantidad conservada.
- Homogeneidad del espacio \Rightarrow momentum total P_i de un sistema cerrado es conservado,

$$P_i = \sum_a \frac{\partial \mathcal{L}}{\partial v_i^a}.$$

■ El momentum total se anula en el sistema centro de masa,

$$\vec{R} = \sum_{a} m_a \vec{r}_a / \sum_{a} m_a.$$

■ Isotropía del espacio \Rightarrow momentum angular \vec{L} es cantidad conservada:

$$\vec{L} = \sum_a \vec{r}_a \wedge \vec{p}_a.$$

.2

6. El sólido rígido

Cuerpo rígido con N partículas, 6 grados de libertad (3 de translación, 3 de rotación) $\Leftrightarrow 3N-6$ constricciones holonónmicas

$$|\vec{r_i} - \vec{r_j}| = \text{Cte.}$$

.26

Velocidad angular

■ Sea \vec{R} el origen de un sistema S ligado al cuerpo, con velocidad $\vec{V} = d\vec{R}/dt$ en un sistema inercial S_{\circ} . Las normas de los vectores posiciones del cuerpo son constantes en S, \Rightarrow el cuerpo describe una rotación en S. En S_{\circ} , para un punto en el cuerpo

$$\vec{v}_{\circ} = \vec{V} + \vec{\Omega} \wedge \vec{r},$$

donde \vec{r} es medido en S, \vec{v}_{\circ} es la velocidad en S_{\circ} , y $\vec{\Omega}$ es la velocidad angular.

• $\vec{\Omega}$ es independiente del origen \vec{R} : si eligimos otro origen $\vec{R'}$, también ligado al cuerpo, con $\vec{a} = \vec{R}' - \vec{R}$, $\vec{r} = \vec{r}' + \vec{a}$, y $\vec{v}_{\circ} = \vec{V}' + \vec{\Omega}' \wedge \vec{r}'$, entonces

$$\vec{V}' = \vec{V} + \vec{\Omega} \wedge \vec{a} \quad \mathbf{y} \quad \vec{\Omega} = \vec{\Omega}' \tag{7}$$

.28

.29

• De Ec. 7, vemos que existe un \vec{a} tal que $\vec{V}' = 0$. En este sistema S' el cuerpo describe una rotación pura con un eje de rotación llamado 'eje instantáneo de rotación', que pasa por el origen O', en R'.

Tensor de inercia, Lagrangeano

- En S_{\circ} , energía cinética: $T = \sum_{i=1}^{N} \frac{1}{2} m_{i} v_{i}^{2} = \int d^{3}x \rho(\vec{x}) \frac{1}{2} |\vec{v}_{\circ}(\vec{x})|^{2}$.

 Escribiendo T observado en S_{\circ} en función de las cantidades medidas en el sistema S ligado al cuerpo, $T = \sum_i \frac{1}{2} m_i |\vec{V} + \vec{\Omega} \wedge \vec{r_i}|^2$.
- \blacksquare Si ubicamos el origen de S en el centro de masa, T se puede escribir

$$T = \frac{1}{2}MV^2 + \sum_{i,j=1}^3 \frac{1}{2}I_{ij}\Omega_i\Omega_j, \text{ con } I_{ij} = \sum_{\sigma=1}^N m_\sigma(\delta_{ij}r_{\sigma,i}^2 - r_{\sigma,i}r_{\sigma,j}).$$

■ Caso contínuo, $I_{ij} = \int d^3x \rho(\vec{x})[x_i^2 \delta_{ij} - x_i x_j]$.

Propiedades del tensor de inercia

- I_{ij} es simétrico. Toda matriz simétrica se puede diagonalizar. Los autovalores I_1 , I_2 , I_3 se llaman 'momentos principales de inercia', y las direcciones correspondientes del sistema S ligado al cuerpo se llaman los 'ejes principales de inercia'.
- Trompo asimétrico: $I_1 \neq I_2 \neq I_3$
- Trompo simétrico: dos momentos iguales.
- lacktriangle Teorema de los ejes paralelos: puede resultar más cómodo calcular I_{ij} en un sistema S' centrado en un origen O' distinto al centro de masa, pero con ejes paralelos a S. Entonces $\vec{r} = \vec{r}' + \vec{a}$, y

$$I_{ij} = I_{ij} + M(a_i^2 \delta_{ij} - a_i a_j).$$

- Momentum angular en sistema inercial ligado a C.M.: $L_i = \sum_{a=1}^N m_a (\vec{r_a} \wedge \vec{r_a})$ $\vec{v}_a)|_i = \sum_{k=1}^3 I_{ik}\Omega_k.$
- Notar L y Ω NO paralelos.

Movimiento del trompo libre, Ecuaciones de Euler

■ Lagrangeano en el sistema inercial S_o : $L = \frac{1}{2}I_{ij}\Omega_i\Omega_j + \text{E.L.} \Rightarrow \dot{L}_k = 0, \ k = 0$ 1, 2, 3.

 Para pasar a una descripción usando componentes en el sistema ligado al cuerpo usamos

$$\left. \frac{d\vec{A}}{dt} \right|_{\text{inercial}} = \left. \frac{d\vec{A}}{dt} \right|_{\text{cuerpo}} + \vec{\Omega} \wedge \vec{A},$$

para cualquier \vec{A} y donde $\vec{\Omega}$ es el vector velocidad rotación angular.

$$\dot{L}_k \Big|_{\text{inercial}} = 0 \implies \frac{d\vec{L}}{dt} \Big|_{\text{cuerpo}} = -\vec{\Omega} \wedge \vec{L} , \ \mathbf{y}$$

$$I_1\dot{\Omega}_1 = \Omega_3\Omega_2(I_2 - I_3)$$

 $I_2\dot{\Omega}_2 = \Omega_1\Omega_3(I_3 - I_1)$
 $I_3\dot{\Omega}_3 = \Omega_1\Omega_2(I_1 - I_2)$

Oscilaciones del trompo simétrico

• Supongamos que $I_1 = I_2 \neq I_3 \Rightarrow \Omega_3 = \text{Cte}$, y

$$\begin{split} &\dot{\Omega}_1 &= -A\Omega_2 \\ &\dot{\Omega}_2 &= A\Omega_1, \ \text{con} \ A = \Omega_3(I_3 - I_1)/I_1. \end{split}$$

• Vemos que Ω_1 y Ω_2 ejecutaran oscilaciones armónicas. Si en $t=0, \vec{\Omega}$ esta en el plano (\hat{e}_1, \hat{e}_3) , formando un ángulo θ con \hat{e}_3 ,

$$\Omega_1(t) = \Omega \sin(\theta) \cos(At)
\Omega_2(t) = \Omega \sin(\theta) \sin(At)
\Omega_3(t) = \Omega \cos(\theta) \text{ Cte.}$$
(8)

■ En el caso del planeta Tierra, $\theta \sim 6~10^{-7}$ rad o un desplazamiento de 4 m del polo Norte, y $A \sim \Omega/305$, i.e. una precesión de 305 días.